ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipsmulrd Unicode version

Theorem ipsmulrd 12092
Description: The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Jim Kingdon, 7-Feb-2023.)
Hypotheses
Ref Expression
ipspart.a  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
ipsstrd.b  |-  ( ph  ->  B  e.  V )
ipsstrd.p  |-  ( ph  ->  .+  e.  W )
ipsstrd.r  |-  ( ph  ->  .X.  e.  X )
ipsstrd.s  |-  ( ph  ->  S  e.  Y )
ipsstrd.x  |-  ( ph  ->  .x.  e.  Q )
ipsstrd.i  |-  ( ph  ->  I  e.  Z )
Assertion
Ref Expression
ipsmulrd  |-  ( ph  ->  .X.  =  ( .r
`  A ) )

Proof of Theorem ipsmulrd
StepHypRef Expression
1 mulrslid 12060 . 2  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2 ipspart.a . . 3  |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } )
3 ipsstrd.b . . 3  |-  ( ph  ->  B  e.  V )
4 ipsstrd.p . . 3  |-  ( ph  ->  .+  e.  W )
5 ipsstrd.r . . 3  |-  ( ph  ->  .X.  e.  X )
6 ipsstrd.s . . 3  |-  ( ph  ->  S  e.  Y )
7 ipsstrd.x . . 3  |-  ( ph  ->  .x.  e.  Q )
8 ipsstrd.i . . 3  |-  ( ph  ->  I  e.  Z )
92, 3, 4, 5, 6, 7, 8ipsstrd 12089 . 2  |-  ( ph  ->  A Struct  <. 1 ,  8
>. )
101simpri 112 . . . . 5  |-  ( .r
`  ndx )  e.  NN
11 opexg 4145 . . . . 5  |-  ( ( ( .r `  ndx )  e.  NN  /\  .X.  e.  X )  ->  <. ( .r `  ndx ) , 
.X.  >.  e.  _V )
1210, 5, 11sylancr 410 . . . 4  |-  ( ph  -> 
<. ( .r `  ndx ) ,  .X.  >.  e.  _V )
13 tpid3g 3633 . . . 4  |-  ( <.
( .r `  ndx ) ,  .X.  >.  e.  _V  -> 
<. ( .r `  ndx ) ,  .X.  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. } )
14 elun1 3238 . . . 4  |-  ( <.
( .r `  ndx ) ,  .X.  >.  e.  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  ->  <. ( .r `  ndx ) , 
.X.  >.  e.  ( {
<. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } ) )
1512, 13, 143syl 17 . . 3  |-  ( ph  -> 
<. ( .r `  ndx ) ,  .X.  >.  e.  ( { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  { <. (Scalar `  ndx ) ,  S >. ,  <. ( .s `  ndx ) , 
.x.  >. ,  <. ( .i `  ndx ) ,  I >. } ) )
1615, 2eleqtrrdi 2231 . 2  |-  ( ph  -> 
<. ( .r `  ndx ) ,  .X.  >.  e.  A
)
171, 9, 5, 16opelstrsl 12044 1  |-  ( ph  ->  .X.  =  ( .r
`  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   _Vcvv 2681    u. cun 3064   {ctp 3524   <.cop 3525   ` cfv 5118   1c1 7614   NNcn 8713   8c8 8770   ndxcnx 11945  Slot cslot 11947   Basecbs 11948   +g cplusg 12010   .rcmulr 12011  Scalarcsca 12013   .scvsca 12014   .icip 12015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-tp 3530  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-5 8775  df-6 8776  df-7 8777  df-8 8778  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-struct 11950  df-ndx 11951  df-slot 11952  df-base 11954  df-plusg 12023  df-mulr 12024  df-sca 12026  df-vsca 12027  df-ip 12028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator