ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tron GIF version

Theorem tron 4360
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron Tr On

Proof of Theorem tron
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4084 . 2 (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On)
2 vex 2729 . . . . . . 7 𝑥 ∈ V
32elon 4352 . . . . . 6 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordelord 4359 . . . . . 6 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
53, 4sylanb 282 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
65ex 114 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → Ord 𝑦))
7 vex 2729 . . . . 5 𝑦 ∈ V
87elon 4352 . . . 4 (𝑦 ∈ On ↔ Ord 𝑦)
96, 8syl6ibr 161 . . 3 (𝑥 ∈ On → (𝑦𝑥𝑦 ∈ On))
109ssrdv 3148 . 2 (𝑥 ∈ On → 𝑥 ⊆ On)
111, 10mprgbir 2524 1 Tr On
Colors of variables: wff set class
Syntax hints:  wcel 2136  wss 3116  Tr wtr 4080  Ord word 4340  Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  ordon  4463  tfi  4559
  Copyright terms: Public domain W3C validator