ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tron GIF version

Theorem tron 4433
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.)
Assertion
Ref Expression
tron Tr On

Proof of Theorem tron
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr3 4150 . 2 (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On)
2 vex 2776 . . . . . . 7 𝑥 ∈ V
32elon 4425 . . . . . 6 (𝑥 ∈ On ↔ Ord 𝑥)
4 ordelord 4432 . . . . . 6 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
53, 4sylanb 284 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
65ex 115 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → Ord 𝑦))
7 vex 2776 . . . . 5 𝑦 ∈ V
87elon 4425 . . . 4 (𝑦 ∈ On ↔ Ord 𝑦)
96, 8imbitrrdi 162 . . 3 (𝑥 ∈ On → (𝑦𝑥𝑦 ∈ On))
109ssrdv 3200 . 2 (𝑥 ∈ On → 𝑥 ⊆ On)
111, 10mprgbir 2565 1 Tr On
Colors of variables: wff set class
Syntax hints:  wcel 2177  wss 3167  Tr wtr 4146  Ord word 4413  Oncon0 4414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3173  df-ss 3180  df-uni 3853  df-tr 4147  df-iord 4417  df-on 4419
This theorem is referenced by:  ordon  4538  tfi  4634
  Copyright terms: Public domain W3C validator