| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tron | GIF version | ||
| Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| Ref | Expression |
|---|---|
| tron | ⊢ Tr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4150 | . 2 ⊢ (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On) | |
| 2 | vex 2776 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elon 4425 | . . . . . 6 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 4 | ordelord 4432 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) | |
| 5 | 3, 4 | sylanb 284 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
| 6 | 5 | ex 115 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → Ord 𝑦)) |
| 7 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 7 | elon 4425 | . . . 4 ⊢ (𝑦 ∈ On ↔ Ord 𝑦) |
| 9 | 6, 8 | imbitrrdi 162 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ On)) |
| 10 | 9 | ssrdv 3200 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
| 11 | 1, 10 | mprgbir 2565 | 1 ⊢ Tr On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ⊆ wss 3167 Tr wtr 4146 Ord word 4413 Oncon0 4414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3173 df-ss 3180 df-uni 3853 df-tr 4147 df-iord 4417 df-on 4419 |
| This theorem is referenced by: ordon 4538 tfi 4634 |
| Copyright terms: Public domain | W3C validator |