| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tron | GIF version | ||
| Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| Ref | Expression |
|---|---|
| tron | ⊢ Tr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4165 | . 2 ⊢ (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On) | |
| 2 | vex 2782 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elon 4442 | . . . . . 6 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 4 | ordelord 4449 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) | |
| 5 | 3, 4 | sylanb 284 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
| 6 | 5 | ex 115 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → Ord 𝑦)) |
| 7 | vex 2782 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 7 | elon 4442 | . . . 4 ⊢ (𝑦 ∈ On ↔ Ord 𝑦) |
| 9 | 6, 8 | imbitrrdi 162 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ On)) |
| 10 | 9 | ssrdv 3210 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
| 11 | 1, 10 | mprgbir 2568 | 1 ⊢ Tr On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ⊆ wss 3177 Tr wtr 4161 Ord word 4430 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-in 3183 df-ss 3190 df-uni 3868 df-tr 4162 df-iord 4434 df-on 4436 |
| This theorem is referenced by: ordon 4555 tfi 4651 |
| Copyright terms: Public domain | W3C validator |