| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tron | GIF version | ||
| Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
| Ref | Expression |
|---|---|
| tron | ⊢ Tr On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftr3 4135 | . 2 ⊢ (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On) | |
| 2 | vex 2766 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elon 4409 | . . . . . 6 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
| 4 | ordelord 4416 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) | |
| 5 | 3, 4 | sylanb 284 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
| 6 | 5 | ex 115 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → Ord 𝑦)) |
| 7 | vex 2766 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 8 | 7 | elon 4409 | . . . 4 ⊢ (𝑦 ∈ On ↔ Ord 𝑦) |
| 9 | 6, 8 | imbitrrdi 162 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ On)) |
| 10 | 9 | ssrdv 3189 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
| 11 | 1, 10 | mprgbir 2555 | 1 ⊢ Tr On |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ⊆ wss 3157 Tr wtr 4131 Ord word 4397 Oncon0 4398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 |
| This theorem is referenced by: ordon 4522 tfi 4618 |
| Copyright terms: Public domain | W3C validator |