![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tron | GIF version |
Description: The class of all ordinal numbers is transitive. (Contributed by NM, 4-May-2009.) |
Ref | Expression |
---|---|
tron | ⊢ Tr On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr3 3940 | . 2 ⊢ (Tr On ↔ ∀𝑥 ∈ On 𝑥 ⊆ On) | |
2 | vex 2622 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
3 | 2 | elon 4201 | . . . . . 6 ⊢ (𝑥 ∈ On ↔ Ord 𝑥) |
4 | ordelord 4208 | . . . . . 6 ⊢ ((Ord 𝑥 ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) | |
5 | 3, 4 | sylanb 278 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → Ord 𝑦) |
6 | 5 | ex 113 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → Ord 𝑦)) |
7 | vex 2622 | . . . . 5 ⊢ 𝑦 ∈ V | |
8 | 7 | elon 4201 | . . . 4 ⊢ (𝑦 ∈ On ↔ Ord 𝑦) |
9 | 6, 8 | syl6ibr 160 | . . 3 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ On)) |
10 | 9 | ssrdv 3031 | . 2 ⊢ (𝑥 ∈ On → 𝑥 ⊆ On) |
11 | 1, 10 | mprgbir 2433 | 1 ⊢ Tr On |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1438 ⊆ wss 2999 Tr wtr 3936 Ord word 4189 Oncon0 4190 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-in 3005 df-ss 3012 df-uni 3654 df-tr 3937 df-iord 4193 df-on 4195 |
This theorem is referenced by: ordon 4303 tfi 4397 |
Copyright terms: Public domain | W3C validator |