Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordelss | Unicode version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 4361 | . 2 | |
2 | trss 4094 | . . 3 | |
3 | 2 | imp 123 | . 2 |
4 | 1, 3 | sylan 281 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 wss 3121 wtr 4085 word 4345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-uni 3795 df-tr 4086 df-iord 4349 |
This theorem is referenced by: ordelord 4364 onelss 4370 ordsuc 4545 smores3 6270 tfrlem1 6285 tfrlemisucaccv 6302 tfrlemiubacc 6307 tfr1onlemsucaccv 6318 tfr1onlemubacc 6323 tfrcllemsucaccv 6331 tfrcllemubacc 6336 nntri1 6473 nnsseleq 6478 fict 6844 infnfi 6871 isinfinf 6873 ordiso2 7010 hashinfuni 10704 |
Copyright terms: Public domain | W3C validator |