| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelss | Unicode version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4426 |
. 2
| |
| 2 | trss 4152 |
. . 3
| |
| 3 | 2 | imp 124 |
. 2
|
| 4 | 1, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4144 df-iord 4414 |
| This theorem is referenced by: ordelord 4429 onelss 4435 ordsuc 4612 smores3 6381 tfrlem1 6396 tfrlemisucaccv 6413 tfrlemiubacc 6418 tfr1onlemsucaccv 6429 tfr1onlemubacc 6434 tfrcllemsucaccv 6442 tfrcllemubacc 6447 nntri1 6584 nnsseleq 6589 fict 6967 infnfi 6994 isinfinf 6996 ordiso2 7139 hashinfuni 10924 |
| Copyright terms: Public domain | W3C validator |