ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelss Unicode version

Theorem ordelss 4427
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.)
Assertion
Ref Expression
ordelss  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )

Proof of Theorem ordelss
StepHypRef Expression
1 ordtr 4426 . 2  |-  ( Ord 
A  ->  Tr  A
)
2 trss 4152 . . 3  |-  ( Tr  A  ->  ( B  e.  A  ->  B  C_  A ) )
32imp 124 . 2  |-  ( ( Tr  A  /\  B  e.  A )  ->  B  C_  A )
41, 3sylan 283 1  |-  ( ( Ord  A  /\  B  e.  A )  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176    C_ wss 3166   Tr wtr 4143   Ord word 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851  df-tr 4144  df-iord 4414
This theorem is referenced by:  ordelord  4429  onelss  4435  ordsuc  4612  smores3  6381  tfrlem1  6396  tfrlemisucaccv  6413  tfrlemiubacc  6418  tfr1onlemsucaccv  6429  tfr1onlemubacc  6434  tfrcllemsucaccv  6442  tfrcllemubacc  6447  nntri1  6584  nnsseleq  6589  fict  6967  infnfi  6994  isinfinf  6996  ordiso2  7139  hashinfuni  10924
  Copyright terms: Public domain W3C validator