| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelss | Unicode version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4443 |
. 2
| |
| 2 | trss 4167 |
. . 3
| |
| 3 | 2 | imp 124 |
. 2
|
| 4 | 1, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-in 3180 df-ss 3187 df-uni 3865 df-tr 4159 df-iord 4431 |
| This theorem is referenced by: ordelord 4446 onelss 4452 ordsuc 4629 smores3 6402 tfrlem1 6417 tfrlemisucaccv 6434 tfrlemiubacc 6439 tfr1onlemsucaccv 6450 tfr1onlemubacc 6455 tfrcllemsucaccv 6463 tfrcllemubacc 6468 nntri1 6605 nnsseleq 6610 fict 6991 infnfi 7018 isinfinf 7020 ordiso2 7163 hashinfuni 10959 |
| Copyright terms: Public domain | W3C validator |