| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelss | Unicode version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4469 |
. 2
| |
| 2 | trss 4191 |
. . 3
| |
| 3 | 2 | imp 124 |
. 2
|
| 4 | 1, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 df-tr 4183 df-iord 4457 |
| This theorem is referenced by: ordelord 4472 onelss 4478 ordsuc 4655 smores3 6439 tfrlem1 6454 tfrlemisucaccv 6471 tfrlemiubacc 6476 tfr1onlemsucaccv 6487 tfr1onlemubacc 6492 tfrcllemsucaccv 6500 tfrcllemubacc 6505 nntri1 6642 nnsseleq 6647 fict 7030 infnfi 7057 isinfinf 7059 ordiso2 7202 hashinfuni 10999 |
| Copyright terms: Public domain | W3C validator |