| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelss | Unicode version | ||
| Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| ordelss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 4425 |
. 2
| |
| 2 | trss 4151 |
. . 3
| |
| 3 | 2 | imp 124 |
. 2
|
| 4 | 1, 3 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4143 df-iord 4413 |
| This theorem is referenced by: ordelord 4428 onelss 4434 ordsuc 4611 smores3 6379 tfrlem1 6394 tfrlemisucaccv 6411 tfrlemiubacc 6416 tfr1onlemsucaccv 6427 tfr1onlemubacc 6432 tfrcllemsucaccv 6440 tfrcllemubacc 6445 nntri1 6582 nnsseleq 6587 fict 6965 infnfi 6992 isinfinf 6994 ordiso2 7137 hashinfuni 10922 |
| Copyright terms: Public domain | W3C validator |