ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssfv Unicode version

Theorem funssfv 5587
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssfv  |-  ( ( Fun  F  /\  G  C_  F  /\  A  e. 
dom  G )  -> 
( F `  A
)  =  ( G `
 A ) )

Proof of Theorem funssfv
StepHypRef Expression
1 fvres 5585 . . . 4  |-  ( A  e.  dom  G  -> 
( ( F  |`  dom  G ) `  A
)  =  ( F `
 A ) )
21eqcomd 2202 . . 3  |-  ( A  e.  dom  G  -> 
( F `  A
)  =  ( ( F  |`  dom  G ) `
 A ) )
3 funssres 5301 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
43fveq1d 5563 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
) `  A )  =  ( G `  A ) )
52, 4sylan9eqr 2251 . 2  |-  ( ( ( Fun  F  /\  G  C_  F )  /\  A  e.  dom  G )  ->  ( F `  A )  =  ( G `  A ) )
653impa 1196 1  |-  ( ( Fun  F  /\  G  C_  F  /\  A  e. 
dom  G )  -> 
( F `  A
)  =  ( G `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    C_ wss 3157   dom cdm 4664    |` cres 4666   Fun wfun 5253   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-res 4676  df-iota 5220  df-fun 5261  df-fv 5267
This theorem is referenced by:  tfrlem9  6386  tfrlemiubacc  6397  tfr1onlemubacc  6413  tfrcllemubacc  6426  ac6sfi  6968  ennnfonelemex  12656
  Copyright terms: Public domain W3C validator