ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssfv Unicode version

Theorem funssfv 5602
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssfv  |-  ( ( Fun  F  /\  G  C_  F  /\  A  e. 
dom  G )  -> 
( F `  A
)  =  ( G `
 A ) )

Proof of Theorem funssfv
StepHypRef Expression
1 fvres 5600 . . . 4  |-  ( A  e.  dom  G  -> 
( ( F  |`  dom  G ) `  A
)  =  ( F `
 A ) )
21eqcomd 2211 . . 3  |-  ( A  e.  dom  G  -> 
( F `  A
)  =  ( ( F  |`  dom  G ) `
 A ) )
3 funssres 5313 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
43fveq1d 5578 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
) `  A )  =  ( G `  A ) )
52, 4sylan9eqr 2260 . 2  |-  ( ( ( Fun  F  /\  G  C_  F )  /\  A  e.  dom  G )  ->  ( F `  A )  =  ( G `  A ) )
653impa 1197 1  |-  ( ( Fun  F  /\  G  C_  F  /\  A  e. 
dom  G )  -> 
( F `  A
)  =  ( G `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176    C_ wss 3166   dom cdm 4675    |` cres 4677   Fun wfun 5265   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-res 4687  df-iota 5232  df-fun 5273  df-fv 5279
This theorem is referenced by:  tfrlem9  6405  tfrlemiubacc  6416  tfr1onlemubacc  6432  tfrcllemubacc  6445  ac6sfi  6995  ennnfonelemex  12785
  Copyright terms: Public domain W3C validator