ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssfv Unicode version

Theorem funssfv 5581
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
funssfv  |-  ( ( Fun  F  /\  G  C_  F  /\  A  e. 
dom  G )  -> 
( F `  A
)  =  ( G `
 A ) )

Proof of Theorem funssfv
StepHypRef Expression
1 fvres 5579 . . . 4  |-  ( A  e.  dom  G  -> 
( ( F  |`  dom  G ) `  A
)  =  ( F `
 A ) )
21eqcomd 2199 . . 3  |-  ( A  e.  dom  G  -> 
( F `  A
)  =  ( ( F  |`  dom  G ) `
 A ) )
3 funssres 5297 . . . 4  |-  ( ( Fun  F  /\  G  C_  F )  ->  ( F  |`  dom  G )  =  G )
43fveq1d 5557 . . 3  |-  ( ( Fun  F  /\  G  C_  F )  ->  (
( F  |`  dom  G
) `  A )  =  ( G `  A ) )
52, 4sylan9eqr 2248 . 2  |-  ( ( ( Fun  F  /\  G  C_  F )  /\  A  e.  dom  G )  ->  ( F `  A )  =  ( G `  A ) )
653impa 1196 1  |-  ( ( Fun  F  /\  G  C_  F  /\  A  e. 
dom  G )  -> 
( F `  A
)  =  ( G `
 A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164    C_ wss 3154   dom cdm 4660    |` cres 4662   Fun wfun 5249   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263
This theorem is referenced by:  tfrlem9  6374  tfrlemiubacc  6385  tfr1onlemubacc  6401  tfrcllemubacc  6414  ac6sfi  6956  ennnfonelemex  12574
  Copyright terms: Public domain W3C validator