| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unopab | Unicode version | ||
| Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| unopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 3439 |
. . 3
| |
| 2 | 19.43 1650 |
. . . . 5
| |
| 3 | andi 819 |
. . . . . . . 8
| |
| 4 | 3 | exbii 1627 |
. . . . . . 7
|
| 5 | 19.43 1650 |
. . . . . . 7
| |
| 6 | 4, 5 | bitr2i 185 |
. . . . . 6
|
| 7 | 6 | exbii 1627 |
. . . . 5
|
| 8 | 2, 7 | bitr3i 186 |
. . . 4
|
| 9 | 8 | abbii 2320 |
. . 3
|
| 10 | 1, 9 | eqtri 2225 |
. 2
|
| 11 | df-opab 4105 |
. . 3
| |
| 12 | df-opab 4105 |
. . 3
| |
| 13 | 11, 12 | uneq12i 3324 |
. 2
|
| 14 | df-opab 4105 |
. 2
| |
| 15 | 10, 13, 14 | 3eqtr4i 2235 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-opab 4105 |
| This theorem is referenced by: xpundi 4730 xpundir 4731 cnvun 5087 coundi 5183 coundir 5184 mptun 5406 lgsquadlem3 15498 |
| Copyright terms: Public domain | W3C validator |