Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unopab | Unicode version |
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
unopab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unab 3400 | . . 3 | |
2 | 19.43 1626 | . . . . 5 | |
3 | andi 818 | . . . . . . . 8 | |
4 | 3 | exbii 1603 | . . . . . . 7 |
5 | 19.43 1626 | . . . . . . 7 | |
6 | 4, 5 | bitr2i 185 | . . . . . 6 |
7 | 6 | exbii 1603 | . . . . 5 |
8 | 2, 7 | bitr3i 186 | . . . 4 |
9 | 8 | abbii 2291 | . . 3 |
10 | 1, 9 | eqtri 2196 | . 2 |
11 | df-opab 4060 | . . 3 | |
12 | df-opab 4060 | . . 3 | |
13 | 11, 12 | uneq12i 3285 | . 2 |
14 | df-opab 4060 | . 2 | |
15 | 10, 13, 14 | 3eqtr4i 2206 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wo 708 wceq 1353 wex 1490 cab 2161 cun 3125 cop 3592 copab 4058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-opab 4060 |
This theorem is referenced by: xpundi 4676 xpundir 4677 cnvun 5026 coundi 5122 coundir 5123 mptun 5339 |
Copyright terms: Public domain | W3C validator |