ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unopab Unicode version

Theorem unopab 4077
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
unopab  |-  ( {
<. x ,  y >.  |  ph }  u.  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  \/  ps ) }

Proof of Theorem unopab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 unab 3400 . . 3  |-  ( { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  u.  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )  =  { z  |  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  \/  E. x E. y ( z  =  <. x ,  y
>.  /\  ps ) ) }
2 19.43 1626 . . . . 5  |-  ( E. x ( E. y
( z  =  <. x ,  y >.  /\  ph )  \/  E. y
( z  =  <. x ,  y >.  /\  ps ) )  <->  ( E. x E. y ( z  =  <. x ,  y
>.  /\  ph )  \/ 
E. x E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
3 andi 818 . . . . . . . 8  |-  ( ( z  =  <. x ,  y >.  /\  ( ph  \/  ps ) )  <-> 
( ( z  = 
<. x ,  y >.  /\  ph )  \/  (
z  =  <. x ,  y >.  /\  ps ) ) )
43exbii 1603 . . . . . . 7  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) )  <->  E. y
( ( z  = 
<. x ,  y >.  /\  ph )  \/  (
z  =  <. x ,  y >.  /\  ps ) ) )
5 19.43 1626 . . . . . . 7  |-  ( E. y ( ( z  =  <. x ,  y
>.  /\  ph )  \/  ( z  =  <. x ,  y >.  /\  ps ) )  <->  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  \/  E. y ( z  = 
<. x ,  y >.  /\  ps ) ) )
64, 5bitr2i 185 . . . . . 6  |-  ( ( E. y ( z  =  <. x ,  y
>.  /\  ph )  \/ 
E. y ( z  =  <. x ,  y
>.  /\  ps ) )  <->  E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) )
76exbii 1603 . . . . 5  |-  ( E. x ( E. y
( z  =  <. x ,  y >.  /\  ph )  \/  E. y
( z  =  <. x ,  y >.  /\  ps ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) )
82, 7bitr3i 186 . . . 4  |-  ( ( E. x E. y
( z  =  <. x ,  y >.  /\  ph )  \/  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) )
98abbii 2291 . . 3  |-  { z  |  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  \/  E. x E. y ( z  =  <. x ,  y
>.  /\  ps ) ) }  =  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) }
101, 9eqtri 2196 . 2  |-  ( { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  u.  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ( ph  \/  ps ) ) }
11 df-opab 4060 . . 3  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
12 df-opab 4060 . . 3  |-  { <. x ,  y >.  |  ps }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) }
1311, 12uneq12i 3285 . 2  |-  ( {
<. x ,  y >.  |  ph }  u.  { <. x ,  y >.  |  ps } )  =  ( { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }  u.  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )
14 df-opab 4060 . 2  |-  { <. x ,  y >.  |  (
ph  \/  ps ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ( ph  \/  ps ) ) }
1510, 13, 143eqtr4i 2206 1  |-  ( {
<. x ,  y >.  |  ph }  u.  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  \/  ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 708    = wceq 1353   E.wex 1490   {cab 2161    u. cun 3125   <.cop 3592   {copab 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-un 3131  df-opab 4060
This theorem is referenced by:  xpundi  4676  xpundir  4677  cnvun  5026  coundi  5122  coundir  5123  mptun  5339
  Copyright terms: Public domain W3C validator