ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unopab Unicode version

Theorem unopab 4122
Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
unopab  |-  ( {
<. x ,  y >.  |  ph }  u.  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  \/  ps ) }

Proof of Theorem unopab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 unab 3439 . . 3  |-  ( { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  u.  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )  =  { z  |  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  \/  E. x E. y ( z  =  <. x ,  y
>.  /\  ps ) ) }
2 19.43 1650 . . . . 5  |-  ( E. x ( E. y
( z  =  <. x ,  y >.  /\  ph )  \/  E. y
( z  =  <. x ,  y >.  /\  ps ) )  <->  ( E. x E. y ( z  =  <. x ,  y
>.  /\  ph )  \/ 
E. x E. y
( z  =  <. x ,  y >.  /\  ps ) ) )
3 andi 819 . . . . . . . 8  |-  ( ( z  =  <. x ,  y >.  /\  ( ph  \/  ps ) )  <-> 
( ( z  = 
<. x ,  y >.  /\  ph )  \/  (
z  =  <. x ,  y >.  /\  ps ) ) )
43exbii 1627 . . . . . . 7  |-  ( E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) )  <->  E. y
( ( z  = 
<. x ,  y >.  /\  ph )  \/  (
z  =  <. x ,  y >.  /\  ps ) ) )
5 19.43 1650 . . . . . . 7  |-  ( E. y ( ( z  =  <. x ,  y
>.  /\  ph )  \/  ( z  =  <. x ,  y >.  /\  ps ) )  <->  ( E. y ( z  = 
<. x ,  y >.  /\  ph )  \/  E. y ( z  = 
<. x ,  y >.  /\  ps ) ) )
64, 5bitr2i 185 . . . . . 6  |-  ( ( E. y ( z  =  <. x ,  y
>.  /\  ph )  \/ 
E. y ( z  =  <. x ,  y
>.  /\  ps ) )  <->  E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) )
76exbii 1627 . . . . 5  |-  ( E. x ( E. y
( z  =  <. x ,  y >.  /\  ph )  \/  E. y
( z  =  <. x ,  y >.  /\  ps ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) )
82, 7bitr3i 186 . . . 4  |-  ( ( E. x E. y
( z  =  <. x ,  y >.  /\  ph )  \/  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) )  <->  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) )
98abbii 2320 . . 3  |-  { z  |  ( E. x E. y ( z  = 
<. x ,  y >.  /\  ph )  \/  E. x E. y ( z  =  <. x ,  y
>.  /\  ps ) ) }  =  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ( ph  \/  ps ) ) }
101, 9eqtri 2225 . 2  |-  ( { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ph ) }  u.  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ( ph  \/  ps ) ) }
11 df-opab 4105 . . 3  |-  { <. x ,  y >.  |  ph }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }
12 df-opab 4105 . . 3  |-  { <. x ,  y >.  |  ps }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ps ) }
1311, 12uneq12i 3324 . 2  |-  ( {
<. x ,  y >.  |  ph }  u.  { <. x ,  y >.  |  ps } )  =  ( { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ph ) }  u.  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  ps ) } )
14 df-opab 4105 . 2  |-  { <. x ,  y >.  |  (
ph  \/  ps ) }  =  { z  |  E. x E. y
( z  =  <. x ,  y >.  /\  ( ph  \/  ps ) ) }
1510, 13, 143eqtr4i 2235 1  |-  ( {
<. x ,  y >.  |  ph }  u.  { <. x ,  y >.  |  ps } )  =  { <. x ,  y
>.  |  ( ph  \/  ps ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    \/ wo 709    = wceq 1372   E.wex 1514   {cab 2190    u. cun 3163   <.cop 3635   {copab 4103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-opab 4105
This theorem is referenced by:  xpundi  4730  xpundir  4731  cnvun  5087  coundi  5183  coundir  5184  mptun  5406  lgsquadlem3  15527
  Copyright terms: Public domain W3C validator