Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecabex | Unicode version |
Description: The class abstraction from df-frec 6370 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.) |
Ref | Expression |
---|---|
frecabex.sex | |
frecabex.fvex | |
frecabex.aex |
Ref | Expression |
---|---|
frecabex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4577 | . . . 4 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 2 | abssi 3222 | . . . . . 6 |
4 | frecabex.sex | . . . . . . . 8 | |
5 | vex 2733 | . . . . . . . 8 | |
6 | fvexg 5515 | . . . . . . . 8 | |
7 | 4, 5, 6 | sylancl 411 | . . . . . . 7 |
8 | frecabex.fvex | . . . . . . 7 | |
9 | fveq2 5496 | . . . . . . . . 9 | |
10 | 9 | eleq1d 2239 | . . . . . . . 8 |
11 | 10 | spcgv 2817 | . . . . . . 7 |
12 | 7, 8, 11 | sylc 62 | . . . . . 6 |
13 | ssexg 4128 | . . . . . 6 | |
14 | 3, 12, 13 | sylancr 412 | . . . . 5 |
15 | 14 | ralrimivw 2544 | . . . 4 |
16 | abrexex2g 6099 | . . . 4 | |
17 | 1, 15, 16 | sylancr 412 | . . 3 |
18 | simpr 109 | . . . . 5 | |
19 | 18 | abssi 3222 | . . . 4 |
20 | frecabex.aex | . . . 4 | |
21 | ssexg 4128 | . . . 4 | |
22 | 19, 20, 21 | sylancr 412 | . . 3 |
23 | 17, 22 | jca 304 | . 2 |
24 | unexb 4427 | . . 3 | |
25 | unab 3394 | . . . 4 | |
26 | 25 | eleq1i 2236 | . . 3 |
27 | 24, 26 | bitri 183 | . 2 |
28 | 23, 27 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wal 1346 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 cun 3119 wss 3121 c0 3414 csuc 4350 com 4574 cdm 4611 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: frectfr 6379 |
Copyright terms: Public domain | W3C validator |