Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecabex | Unicode version |
Description: The class abstraction from df-frec 6359 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.) |
Ref | Expression |
---|---|
frecabex.sex | |
frecabex.fvex | |
frecabex.aex |
Ref | Expression |
---|---|
frecabex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4570 | . . . 4 | |
2 | simpr 109 | . . . . . . 7 | |
3 | 2 | abssi 3217 | . . . . . 6 |
4 | frecabex.sex | . . . . . . . 8 | |
5 | vex 2729 | . . . . . . . 8 | |
6 | fvexg 5505 | . . . . . . . 8 | |
7 | 4, 5, 6 | sylancl 410 | . . . . . . 7 |
8 | frecabex.fvex | . . . . . . 7 | |
9 | fveq2 5486 | . . . . . . . . 9 | |
10 | 9 | eleq1d 2235 | . . . . . . . 8 |
11 | 10 | spcgv 2813 | . . . . . . 7 |
12 | 7, 8, 11 | sylc 62 | . . . . . 6 |
13 | ssexg 4121 | . . . . . 6 | |
14 | 3, 12, 13 | sylancr 411 | . . . . 5 |
15 | 14 | ralrimivw 2540 | . . . 4 |
16 | abrexex2g 6088 | . . . 4 | |
17 | 1, 15, 16 | sylancr 411 | . . 3 |
18 | simpr 109 | . . . . 5 | |
19 | 18 | abssi 3217 | . . . 4 |
20 | frecabex.aex | . . . 4 | |
21 | ssexg 4121 | . . . 4 | |
22 | 19, 20, 21 | sylancr 411 | . . 3 |
23 | 17, 22 | jca 304 | . 2 |
24 | unexb 4420 | . . 3 | |
25 | unab 3389 | . . . 4 | |
26 | 25 | eleq1i 2232 | . . 3 |
27 | 24, 26 | bitri 183 | . 2 |
28 | 23, 27 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 cun 3114 wss 3116 c0 3409 csuc 4343 com 4567 cdm 4604 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: frectfr 6368 |
Copyright terms: Public domain | W3C validator |