ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecabex Unicode version

Theorem frecabex 6357
Description: The class abstraction from df-frec 6350 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
Hypotheses
Ref Expression
frecabex.sex  |-  ( ph  ->  S  e.  V )
frecabex.fvex  |-  ( ph  ->  A. y ( F `
 y )  e. 
_V )
frecabex.aex  |-  ( ph  ->  A  e.  W )
Assertion
Ref Expression
frecabex  |-  ( ph  ->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
Distinct variable groups:    x, A    x, F    x, S, y    ph, m    x, m, y    y, F
Allowed substitution hints:    ph( x, y)    A( y, m)    S( m)    F( m)    V( x, y, m)    W( x, y, m)

Proof of Theorem frecabex
StepHypRef Expression
1 omex 4564 . . . 4  |-  om  e.  _V
2 simpr 109 . . . . . . 7  |-  ( ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  ->  x  e.  ( F `  ( S `
 m ) ) )
32abssi 3212 . . . . . 6  |-  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) ) }  C_  ( F `  ( S `
 m ) )
4 frecabex.sex . . . . . . . 8  |-  ( ph  ->  S  e.  V )
5 vex 2724 . . . . . . . 8  |-  m  e. 
_V
6 fvexg 5499 . . . . . . . 8  |-  ( ( S  e.  V  /\  m  e.  _V )  ->  ( S `  m
)  e.  _V )
74, 5, 6sylancl 410 . . . . . . 7  |-  ( ph  ->  ( S `  m
)  e.  _V )
8 frecabex.fvex . . . . . . 7  |-  ( ph  ->  A. y ( F `
 y )  e. 
_V )
9 fveq2 5480 . . . . . . . . 9  |-  ( y  =  ( S `  m )  ->  ( F `  y )  =  ( F `  ( S `  m ) ) )
109eleq1d 2233 . . . . . . . 8  |-  ( y  =  ( S `  m )  ->  (
( F `  y
)  e.  _V  <->  ( F `  ( S `  m
) )  e.  _V ) )
1110spcgv 2808 . . . . . . 7  |-  ( ( S `  m )  e.  _V  ->  ( A. y ( F `  y )  e.  _V  ->  ( F `  ( S `  m )
)  e.  _V )
)
127, 8, 11sylc 62 . . . . . 6  |-  ( ph  ->  ( F `  ( S `  m )
)  e.  _V )
13 ssexg 4115 . . . . . 6  |-  ( ( { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  C_  ( F `  ( S `  m ) )  /\  ( F `  ( S `
 m ) )  e.  _V )  ->  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
143, 12, 13sylancr 411 . . . . 5  |-  ( ph  ->  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  e.  _V )
1514ralrimivw 2538 . . . 4  |-  ( ph  ->  A. m  e.  om  { x  |  ( dom 
S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
16 abrexex2g 6080 . . . 4  |-  ( ( om  e.  _V  /\  A. m  e.  om  {
x  |  ( dom 
S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )  ->  { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
171, 15, 16sylancr 411 . . 3  |-  ( ph  ->  { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
18 simpr 109 . . . . 5  |-  ( ( dom  S  =  (/)  /\  x  e.  A )  ->  x  e.  A
)
1918abssi 3212 . . . 4  |-  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  C_  A
20 frecabex.aex . . . 4  |-  ( ph  ->  A  e.  W )
21 ssexg 4115 . . . 4  |-  ( ( { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  C_  A  /\  A  e.  W )  ->  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
2219, 20, 21sylancr 411 . . 3  |-  ( ph  ->  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
2317, 22jca 304 . 2  |-  ( ph  ->  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  e.  _V  /\ 
{ x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
)
24 unexb 4414 . . 3  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V  /\  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) }  e.  _V )  <->  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  u.  {
x  |  ( dom 
S  =  (/)  /\  x  e.  A ) } )  e.  _V )
25 unab 3384 . . . 4  |-  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) ) }  u.  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) } )  =  { x  |  ( E. m  e. 
om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) )  \/  ( dom  S  =  (/)  /\  x  e.  A ) ) }
2625eleq1i 2230 . . 3  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  u.  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) } )  e.  _V  <->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) )  \/  ( dom  S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
2724, 26bitri 183 . 2  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V  /\  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) }  e.  _V )  <->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
2823, 27sylib 121 1  |-  ( ph  ->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698   A.wal 1340    = wceq 1342    e. wcel 2135   {cab 2150   A.wral 2442   E.wrex 2443   _Vcvv 2721    u. cun 3109    C_ wss 3111   (/)c0 3404   suc csuc 4337   omcom 4561   dom cdm 4598   ` cfv 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190
This theorem is referenced by:  frectfr  6359
  Copyright terms: Public domain W3C validator