| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecabex | Unicode version | ||
| Description: The class abstraction from df-frec 6477 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.) |
| Ref | Expression |
|---|---|
| frecabex.sex |
|
| frecabex.fvex |
|
| frecabex.aex |
|
| Ref | Expression |
|---|---|
| frecabex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4641 |
. . . 4
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | 2 | abssi 3268 |
. . . . . 6
|
| 4 | frecabex.sex |
. . . . . . . 8
| |
| 5 | vex 2775 |
. . . . . . . 8
| |
| 6 | fvexg 5595 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | sylancl 413 |
. . . . . . 7
|
| 8 | frecabex.fvex |
. . . . . . 7
| |
| 9 | fveq2 5576 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2274 |
. . . . . . . 8
|
| 11 | 10 | spcgv 2860 |
. . . . . . 7
|
| 12 | 7, 8, 11 | sylc 62 |
. . . . . 6
|
| 13 | ssexg 4183 |
. . . . . 6
| |
| 14 | 3, 12, 13 | sylancr 414 |
. . . . 5
|
| 15 | 14 | ralrimivw 2580 |
. . . 4
|
| 16 | abrexex2g 6205 |
. . . 4
| |
| 17 | 1, 15, 16 | sylancr 414 |
. . 3
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 18 | abssi 3268 |
. . . 4
|
| 20 | frecabex.aex |
. . . 4
| |
| 21 | ssexg 4183 |
. . . 4
| |
| 22 | 19, 20, 21 | sylancr 414 |
. . 3
|
| 23 | 17, 22 | jca 306 |
. 2
|
| 24 | unexb 4489 |
. . 3
| |
| 25 | unab 3440 |
. . . 4
| |
| 26 | 25 | eleq1i 2271 |
. . 3
|
| 27 | 24, 26 | bitri 184 |
. 2
|
| 28 | 23, 27 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: frectfr 6486 |
| Copyright terms: Public domain | W3C validator |