ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecabex Unicode version

Theorem frecabex 6456
Description: The class abstraction from df-frec 6449 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.)
Hypotheses
Ref Expression
frecabex.sex  |-  ( ph  ->  S  e.  V )
frecabex.fvex  |-  ( ph  ->  A. y ( F `
 y )  e. 
_V )
frecabex.aex  |-  ( ph  ->  A  e.  W )
Assertion
Ref Expression
frecabex  |-  ( ph  ->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
Distinct variable groups:    x, A    x, F    x, S, y    ph, m    x, m, y    y, F
Allowed substitution hints:    ph( x, y)    A( y, m)    S( m)    F( m)    V( x, y, m)    W( x, y, m)

Proof of Theorem frecabex
StepHypRef Expression
1 omex 4629 . . . 4  |-  om  e.  _V
2 simpr 110 . . . . . . 7  |-  ( ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  ->  x  e.  ( F `  ( S `
 m ) ) )
32abssi 3258 . . . . . 6  |-  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) ) }  C_  ( F `  ( S `
 m ) )
4 frecabex.sex . . . . . . . 8  |-  ( ph  ->  S  e.  V )
5 vex 2766 . . . . . . . 8  |-  m  e. 
_V
6 fvexg 5577 . . . . . . . 8  |-  ( ( S  e.  V  /\  m  e.  _V )  ->  ( S `  m
)  e.  _V )
74, 5, 6sylancl 413 . . . . . . 7  |-  ( ph  ->  ( S `  m
)  e.  _V )
8 frecabex.fvex . . . . . . 7  |-  ( ph  ->  A. y ( F `
 y )  e. 
_V )
9 fveq2 5558 . . . . . . . . 9  |-  ( y  =  ( S `  m )  ->  ( F `  y )  =  ( F `  ( S `  m ) ) )
109eleq1d 2265 . . . . . . . 8  |-  ( y  =  ( S `  m )  ->  (
( F `  y
)  e.  _V  <->  ( F `  ( S `  m
) )  e.  _V ) )
1110spcgv 2851 . . . . . . 7  |-  ( ( S `  m )  e.  _V  ->  ( A. y ( F `  y )  e.  _V  ->  ( F `  ( S `  m )
)  e.  _V )
)
127, 8, 11sylc 62 . . . . . 6  |-  ( ph  ->  ( F `  ( S `  m )
)  e.  _V )
13 ssexg 4172 . . . . . 6  |-  ( ( { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  C_  ( F `  ( S `  m ) )  /\  ( F `  ( S `
 m ) )  e.  _V )  ->  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
143, 12, 13sylancr 414 . . . . 5  |-  ( ph  ->  { x  |  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  e.  _V )
1514ralrimivw 2571 . . . 4  |-  ( ph  ->  A. m  e.  om  { x  |  ( dom 
S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
16 abrexex2g 6177 . . . 4  |-  ( ( om  e.  _V  /\  A. m  e.  om  {
x  |  ( dom 
S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )  ->  { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
171, 15, 16sylancr 414 . . 3  |-  ( ph  ->  { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V )
18 simpr 110 . . . . 5  |-  ( ( dom  S  =  (/)  /\  x  e.  A )  ->  x  e.  A
)
1918abssi 3258 . . . 4  |-  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  C_  A
20 frecabex.aex . . . 4  |-  ( ph  ->  A  e.  W )
21 ssexg 4172 . . . 4  |-  ( ( { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  C_  A  /\  A  e.  W )  ->  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
2219, 20, 21sylancr 414 . . 3  |-  ( ph  ->  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
2317, 22jca 306 . 2  |-  ( ph  ->  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  e.  _V  /\ 
{ x  |  ( dom  S  =  (/)  /\  x  e.  A ) }  e.  _V )
)
24 unexb 4477 . . 3  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V  /\  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) }  e.  _V )  <->  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) ) }  u.  {
x  |  ( dom 
S  =  (/)  /\  x  e.  A ) } )  e.  _V )
25 unab 3430 . . . 4  |-  ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) ) }  u.  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) } )  =  { x  |  ( E. m  e. 
om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) )  \/  ( dom  S  =  (/)  /\  x  e.  A ) ) }
2625eleq1i 2262 . . 3  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  u.  { x  |  ( dom  S  =  (/)  /\  x  e.  A ) } )  e.  _V  <->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m )
) )  \/  ( dom  S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
2724, 26bitri 184 . 2  |-  ( ( { x  |  E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `  m ) ) ) }  e.  _V  /\  { x  |  ( dom 
S  =  (/)  /\  x  e.  A ) }  e.  _V )  <->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
2823, 27sylib 122 1  |-  ( ph  ->  { x  |  ( E. m  e.  om  ( dom  S  =  suc  m  /\  x  e.  ( F `  ( S `
 m ) ) )  \/  ( dom 
S  =  (/)  /\  x  e.  A ) ) }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    u. cun 3155    C_ wss 3157   (/)c0 3450   suc csuc 4400   omcom 4626   dom cdm 4663   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by:  frectfr  6458
  Copyright terms: Public domain W3C validator