| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecabex | Unicode version | ||
| Description: The class abstraction from df-frec 6500 exists. This is a lemma for other finite recursion proofs. (Contributed by Jim Kingdon, 13-May-2020.) |
| Ref | Expression |
|---|---|
| frecabex.sex |
|
| frecabex.fvex |
|
| frecabex.aex |
|
| Ref | Expression |
|---|---|
| frecabex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4659 |
. . . 4
| |
| 2 | simpr 110 |
. . . . . . 7
| |
| 3 | 2 | abssi 3276 |
. . . . . 6
|
| 4 | frecabex.sex |
. . . . . . . 8
| |
| 5 | vex 2779 |
. . . . . . . 8
| |
| 6 | fvexg 5618 |
. . . . . . . 8
| |
| 7 | 4, 5, 6 | sylancl 413 |
. . . . . . 7
|
| 8 | frecabex.fvex |
. . . . . . 7
| |
| 9 | fveq2 5599 |
. . . . . . . . 9
| |
| 10 | 9 | eleq1d 2276 |
. . . . . . . 8
|
| 11 | 10 | spcgv 2867 |
. . . . . . 7
|
| 12 | 7, 8, 11 | sylc 62 |
. . . . . 6
|
| 13 | ssexg 4199 |
. . . . . 6
| |
| 14 | 3, 12, 13 | sylancr 414 |
. . . . 5
|
| 15 | 14 | ralrimivw 2582 |
. . . 4
|
| 16 | abrexex2g 6228 |
. . . 4
| |
| 17 | 1, 15, 16 | sylancr 414 |
. . 3
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 18 | abssi 3276 |
. . . 4
|
| 20 | frecabex.aex |
. . . 4
| |
| 21 | ssexg 4199 |
. . . 4
| |
| 22 | 19, 20, 21 | sylancr 414 |
. . 3
|
| 23 | 17, 22 | jca 306 |
. 2
|
| 24 | unexb 4507 |
. . 3
| |
| 25 | unab 3448 |
. . . 4
| |
| 26 | 25 | eleq1i 2273 |
. . 3
|
| 27 | 24, 26 | bitri 184 |
. 2
|
| 28 | 23, 27 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: frectfr 6509 |
| Copyright terms: Public domain | W3C validator |