ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmun Unicode version

Theorem dmun 4741
Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmun  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )

Proof of Theorem dmun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unab 3338 . . 3  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  ( E. x  y A x  \/  E. x  y B x ) }
2 brun 3974 . . . . . 6  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
32exbii 1584 . . . . 5  |-  ( E. x  y ( A  u.  B ) x  <->  E. x ( y A x  \/  y B x ) )
4 19.43 1607 . . . . 5  |-  ( E. x ( y A x  \/  y B x )  <->  ( E. x  y A x  \/  E. x  y B x ) )
53, 4bitr2i 184 . . . 4  |-  ( ( E. x  y A x  \/  E. x  y B x )  <->  E. x  y ( A  u.  B ) x )
65abbii 2253 . . 3  |-  { y  |  ( E. x  y A x  \/  E. x  y B x ) }  =  {
y  |  E. x  y ( A  u.  B ) x }
71, 6eqtri 2158 . 2  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  E. x  y ( A  u.  B ) x }
8 df-dm 4544 . . 3  |-  dom  A  =  { y  |  E. x  y A x }
9 df-dm 4544 . . 3  |-  dom  B  =  { y  |  E. x  y B x }
108, 9uneq12i 3223 . 2  |-  ( dom 
A  u.  dom  B
)  =  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )
11 df-dm 4544 . 2  |-  dom  ( A  u.  B )  =  { y  |  E. x  y ( A  u.  B ) x }
127, 10, 113eqtr4ri 2169 1  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 697    = wceq 1331   E.wex 1468   {cab 2123    u. cun 3064   class class class wbr 3924   dom cdm 4534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-v 2683  df-un 3070  df-br 3925  df-dm 4544
This theorem is referenced by:  rnun  4942  dmpropg  5006  dmtpop  5009  fntpg  5174  fnun  5224  sbthlemi5  6842  casedm  6964  djudm  6983  exmidfodomrlemim  7050  ennnfonelemhdmp1  11911  ennnfonelemkh  11914  strleund  12036  strleun  12037
  Copyright terms: Public domain W3C validator