ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmun Unicode version

Theorem dmun 4885
Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmun  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )

Proof of Theorem dmun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unab 3440 . . 3  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  ( E. x  y A x  \/  E. x  y B x ) }
2 brun 4095 . . . . . 6  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
32exbii 1628 . . . . 5  |-  ( E. x  y ( A  u.  B ) x  <->  E. x ( y A x  \/  y B x ) )
4 19.43 1651 . . . . 5  |-  ( E. x ( y A x  \/  y B x )  <->  ( E. x  y A x  \/  E. x  y B x ) )
53, 4bitr2i 185 . . . 4  |-  ( ( E. x  y A x  \/  E. x  y B x )  <->  E. x  y ( A  u.  B ) x )
65abbii 2321 . . 3  |-  { y  |  ( E. x  y A x  \/  E. x  y B x ) }  =  {
y  |  E. x  y ( A  u.  B ) x }
71, 6eqtri 2226 . 2  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  E. x  y ( A  u.  B ) x }
8 df-dm 4685 . . 3  |-  dom  A  =  { y  |  E. x  y A x }
9 df-dm 4685 . . 3  |-  dom  B  =  { y  |  E. x  y B x }
108, 9uneq12i 3325 . 2  |-  ( dom 
A  u.  dom  B
)  =  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )
11 df-dm 4685 . 2  |-  dom  ( A  u.  B )  =  { y  |  E. x  y ( A  u.  B ) x }
127, 10, 113eqtr4ri 2237 1  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373   E.wex 1515   {cab 2191    u. cun 3164   class class class wbr 4044   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-br 4045  df-dm 4685
This theorem is referenced by:  rnun  5091  dmpropg  5155  dmtpop  5158  fntpg  5330  fnun  5382  sbthlemi5  7063  casedm  7188  djudm  7207  exmidfodomrlemim  7309  ennnfonelemhdmp1  12780  ennnfonelemkh  12783  strleund  12935  strleun  12936
  Copyright terms: Public domain W3C validator