ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmun Unicode version

Theorem dmun 4873
Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmun  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )

Proof of Theorem dmun
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unab 3430 . . 3  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  ( E. x  y A x  \/  E. x  y B x ) }
2 brun 4084 . . . . . 6  |-  ( y ( A  u.  B
) x  <->  ( y A x  \/  y B x ) )
32exbii 1619 . . . . 5  |-  ( E. x  y ( A  u.  B ) x  <->  E. x ( y A x  \/  y B x ) )
4 19.43 1642 . . . . 5  |-  ( E. x ( y A x  \/  y B x )  <->  ( E. x  y A x  \/  E. x  y B x ) )
53, 4bitr2i 185 . . . 4  |-  ( ( E. x  y A x  \/  E. x  y B x )  <->  E. x  y ( A  u.  B ) x )
65abbii 2312 . . 3  |-  { y  |  ( E. x  y A x  \/  E. x  y B x ) }  =  {
y  |  E. x  y ( A  u.  B ) x }
71, 6eqtri 2217 . 2  |-  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )  =  { y  |  E. x  y ( A  u.  B ) x }
8 df-dm 4673 . . 3  |-  dom  A  =  { y  |  E. x  y A x }
9 df-dm 4673 . . 3  |-  dom  B  =  { y  |  E. x  y B x }
108, 9uneq12i 3315 . 2  |-  ( dom 
A  u.  dom  B
)  =  ( { y  |  E. x  y A x }  u.  { y  |  E. x  y B x } )
11 df-dm 4673 . 2  |-  dom  ( A  u.  B )  =  { y  |  E. x  y ( A  u.  B ) x }
127, 10, 113eqtr4ri 2228 1  |-  dom  ( A  u.  B )  =  ( dom  A  u.  dom  B )
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1364   E.wex 1506   {cab 2182    u. cun 3155   class class class wbr 4033   dom cdm 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-br 4034  df-dm 4673
This theorem is referenced by:  rnun  5078  dmpropg  5142  dmtpop  5145  fntpg  5314  fnun  5364  sbthlemi5  7027  casedm  7152  djudm  7171  exmidfodomrlemim  7268  ennnfonelemhdmp1  12626  ennnfonelemkh  12629  strleund  12781  strleun  12782
  Copyright terms: Public domain W3C validator