| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version | ||
| Description: The union and intersection of a singleton are equal. See also eusn 3740. (Contributed by Jim Kingdon, 14-Aug-2018.) |
| Ref | Expression |
|---|---|
| uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 3903 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
| 3 | unieq 3896 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | inteq 3925 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
| 5 | 1 | intsn 3957 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
| 6 | 4, 5 | eqtrdi 2278 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
| 7 | 2, 3, 6 | 3eqtr4a 2288 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| 8 | 7 | exlimiv 1644 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∃wex 1538 {csn 3666 ∪ cuni 3887 ∩ cint 3922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 |
| This theorem is referenced by: uniintabim 3959 |
| Copyright terms: Public domain | W3C validator |