ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3927
Description: The union and intersection of a singleton are equal. See also eusn 3712. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2776 . . . 4 𝑥 ∈ V
21unisn 3872 . . 3 {𝑥} = 𝑥
3 unieq 3865 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3894 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3926 . . . 4 {𝑥} = 𝑥
64, 5eqtrdi 2255 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2265 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1622 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wex 1516  {csn 3638   cuni 3856   cint 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-sn 3644  df-pr 3645  df-uni 3857  df-int 3892
This theorem is referenced by:  uniintabim  3928
  Copyright terms: Public domain W3C validator