| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version | ||
| Description: The union and intersection of a singleton are equal. See also eusn 3712. (Contributed by Jim Kingdon, 14-Aug-2018.) |
| Ref | Expression |
|---|---|
| uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 3872 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
| 3 | unieq 3865 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | inteq 3894 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
| 5 | 1 | intsn 3926 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
| 6 | 4, 5 | eqtrdi 2255 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
| 7 | 2, 3, 6 | 3eqtr4a 2265 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| 8 | 7 | exlimiv 1622 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∃wex 1516 {csn 3638 ∪ cuni 3856 ∩ cint 3891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 |
| This theorem is referenced by: uniintabim 3928 |
| Copyright terms: Public domain | W3C validator |