ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3911
Description: The union and intersection of a singleton are equal. See also eusn 3697. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2766 . . . 4 𝑥 ∈ V
21unisn 3856 . . 3 {𝑥} = 𝑥
3 unieq 3849 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3878 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3910 . . . 4 {𝑥} = 𝑥
64, 5eqtrdi 2245 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2255 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1612 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wex 1506  {csn 3623   cuni 3840   cint 3875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876
This theorem is referenced by:  uniintabim  3912
  Copyright terms: Public domain W3C validator