Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version |
Description: The union and intersection of a singleton are equal. See also eusn 3650. (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 3805 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
3 | unieq 3798 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | inteq 3827 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
5 | 1 | intsn 3859 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
6 | 4, 5 | eqtrdi 2215 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
7 | 2, 3, 6 | 3eqtr4a 2225 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
8 | 7 | exlimiv 1586 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∃wex 1480 {csn 3576 ∪ cuni 3789 ∩ cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 |
This theorem is referenced by: uniintabim 3861 |
Copyright terms: Public domain | W3C validator |