ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3876
Description: The union and intersection of a singleton are equal. See also eusn 3663. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2738 . . . 4 𝑥 ∈ V
21unisn 3821 . . 3 {𝑥} = 𝑥
3 unieq 3814 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3843 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3875 . . . 4 {𝑥} = 𝑥
64, 5eqtrdi 2224 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2234 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1596 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1490  {csn 3589   cuni 3805   cint 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-sn 3595  df-pr 3596  df-uni 3806  df-int 3841
This theorem is referenced by:  uniintabim  3877
  Copyright terms: Public domain W3C validator