ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3754
Description: The union and intersection of a singleton are equal. See also eusn 3544. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2644 . . . 4 𝑥 ∈ V
21unisn 3699 . . 3 {𝑥} = 𝑥
3 unieq 3692 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3721 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3753 . . . 4 {𝑥} = 𝑥
64, 5syl6eq 2148 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2158 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1545 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1299  wex 1436  {csn 3474   cuni 3683   cint 3718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-sn 3480  df-pr 3481  df-uni 3684  df-int 3719
This theorem is referenced by:  uniintabim  3755
  Copyright terms: Public domain W3C validator