ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3882
Description: The union and intersection of a singleton are equal. See also eusn 3668. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2742 . . . 4 𝑥 ∈ V
21unisn 3827 . . 3 {𝑥} = 𝑥
3 unieq 3820 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3849 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3881 . . . 4 {𝑥} = 𝑥
64, 5eqtrdi 2226 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2236 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1598 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wex 1492  {csn 3594   cuni 3811   cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847
This theorem is referenced by:  uniintabim  3883
  Copyright terms: Public domain W3C validator