![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version |
Description: The union and intersection of a singleton are equal. See also eusn 3544. (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2644 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 3699 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
3 | unieq 3692 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | inteq 3721 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
5 | 1 | intsn 3753 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
6 | 4, 5 | syl6eq 2148 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
7 | 2, 3, 6 | 3eqtr4a 2158 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
8 | 7 | exlimiv 1545 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1299 ∃wex 1436 {csn 3474 ∪ cuni 3683 ∩ cint 3718 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-sn 3480 df-pr 3481 df-uni 3684 df-int 3719 |
This theorem is referenced by: uniintabim 3755 |
Copyright terms: Public domain | W3C validator |