ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3958
Description: The union and intersection of a singleton are equal. See also eusn 3740. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2802 . . . 4 𝑥 ∈ V
21unisn 3903 . . 3 {𝑥} = 𝑥
3 unieq 3896 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3925 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3957 . . . 4 {𝑥} = 𝑥
64, 5eqtrdi 2278 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2288 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1644 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wex 1538  {csn 3666   cuni 3887   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-sn 3672  df-pr 3673  df-uni 3888  df-int 3923
This theorem is referenced by:  uniintabim  3959
  Copyright terms: Public domain W3C validator