Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version |
Description: The union and intersection of a singleton are equal. See also eusn 3663. (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 3821 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
3 | unieq 3814 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | inteq 3843 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
5 | 1 | intsn 3875 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
6 | 4, 5 | eqtrdi 2224 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
7 | 2, 3, 6 | 3eqtr4a 2234 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
8 | 7 | exlimiv 1596 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1490 {csn 3589 ∪ cuni 3805 ∩ cint 3840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 |
This theorem is referenced by: uniintabim 3877 |
Copyright terms: Public domain | W3C validator |