ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3860
Description: The union and intersection of a singleton are equal. See also eusn 3650. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2729 . . . 4 𝑥 ∈ V
21unisn 3805 . . 3 {𝑥} = 𝑥
3 unieq 3798 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3827 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3859 . . . 4 {𝑥} = 𝑥
64, 5eqtrdi 2215 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2225 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1586 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wex 1480  {csn 3576   cuni 3789   cint 3824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825
This theorem is referenced by:  uniintabim  3861
  Copyright terms: Public domain W3C validator