| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version | ||
| Description: The union and intersection of a singleton are equal. See also eusn 3697. (Contributed by Jim Kingdon, 14-Aug-2018.) |
| Ref | Expression |
|---|---|
| uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 3856 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
| 3 | unieq 3849 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | inteq 3878 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
| 5 | 1 | intsn 3910 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
| 6 | 4, 5 | eqtrdi 2245 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
| 7 | 2, 3, 6 | 3eqtr4a 2255 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| 8 | 7 | exlimiv 1612 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∃wex 1506 {csn 3623 ∪ cuni 3840 ∩ cint 3875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 |
| This theorem is referenced by: uniintabim 3912 |
| Copyright terms: Public domain | W3C validator |