ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniintsnr GIF version

Theorem uniintsnr 3867
Description: The union and intersection of a singleton are equal. See also eusn 3657. (Contributed by Jim Kingdon, 14-Aug-2018.)
Assertion
Ref Expression
uniintsnr (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem uniintsnr
StepHypRef Expression
1 vex 2733 . . . 4 𝑥 ∈ V
21unisn 3812 . . 3 {𝑥} = 𝑥
3 unieq 3805 . . 3 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 inteq 3834 . . . 4 (𝐴 = {𝑥} → 𝐴 = {𝑥})
51intsn 3866 . . . 4 {𝑥} = 𝑥
64, 5eqtrdi 2219 . . 3 (𝐴 = {𝑥} → 𝐴 = 𝑥)
72, 3, 63eqtr4a 2229 . 2 (𝐴 = {𝑥} → 𝐴 = 𝐴)
87exlimiv 1591 1 (∃𝑥 𝐴 = {𝑥} → 𝐴 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wex 1485  {csn 3583   cuni 3796   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832
This theorem is referenced by:  uniintabim  3868
  Copyright terms: Public domain W3C validator