![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version |
Description: The union and intersection of a singleton are equal. See also eusn 3668. (Contributed by Jim Kingdon, 14-Aug-2018.) |
Ref | Expression |
---|---|
uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | unisn 3827 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
3 | unieq 3820 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
4 | inteq 3849 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
5 | 1 | intsn 3881 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
6 | 4, 5 | eqtrdi 2226 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
7 | 2, 3, 6 | 3eqtr4a 2236 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
8 | 7 | exlimiv 1598 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∃wex 1492 {csn 3594 ∪ cuni 3811 ∩ cint 3846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 |
This theorem is referenced by: uniintabim 3883 |
Copyright terms: Public domain | W3C validator |