| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniintsnr | GIF version | ||
| Description: The union and intersection of a singleton are equal. See also eusn 3706. (Contributed by Jim Kingdon, 14-Aug-2018.) |
| Ref | Expression |
|---|---|
| uniintsnr | ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | unisn 3865 | . . 3 ⊢ ∪ {𝑥} = 𝑥 |
| 3 | unieq 3858 | . . 3 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∪ {𝑥}) | |
| 4 | inteq 3887 | . . . 4 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = ∩ {𝑥}) | |
| 5 | 1 | intsn 3919 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
| 6 | 4, 5 | eqtrdi 2253 | . . 3 ⊢ (𝐴 = {𝑥} → ∩ 𝐴 = 𝑥) |
| 7 | 2, 3, 6 | 3eqtr4a 2263 | . 2 ⊢ (𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| 8 | 7 | exlimiv 1620 | 1 ⊢ (∃𝑥 𝐴 = {𝑥} → ∪ 𝐴 = ∩ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∃wex 1514 {csn 3632 ∪ cuni 3849 ∩ cint 3884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 |
| This theorem is referenced by: uniintabim 3921 |
| Copyright terms: Public domain | W3C validator |