| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4830 |
. 2
| |
| 2 | unexg 4533 |
. . 3
| |
| 3 | pwexg 4263 |
. . 3
| |
| 4 | pwexg 4263 |
. . 3
| |
| 5 | 2, 3, 4 | 3syl 17 |
. 2
|
| 6 | ssexg 4222 |
. 2
| |
| 7 | 1, 5, 6 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: xpex 4833 sqxpexg 4834 resiexg 5049 cnvexg 5265 coexg 5272 fex2 5491 fabexg 5512 resfunexgALT 6251 cofunexg 6252 fnexALT 6254 funexw 6255 opabex3d 6264 opabex3 6265 oprabexd 6270 ofmresex 6280 mpoexxg 6354 tposexg 6402 erex 6702 pmex 6798 mapex 6799 pmvalg 6804 elpmg 6809 fvdiagfn 6838 ixpexgg 6867 ixpsnf1o 6881 map1 6963 xpdom2 6986 xpdom3m 6989 xpen 7002 mapxpen 7005 xpfi 7090 djuex 7206 djuassen 7395 cc2lem 7448 shftfvalg 11324 climconst2 11797 prdsval 13301 prdsbaslemss 13302 pwsval 13319 pwsbas 13320 mulgnngsum 13659 releqgg 13752 eqgex 13753 eqgfval 13754 reldvdsrsrg 14050 dvdsrvald 14051 dvdsrex 14056 aprval 14240 aprap 14244 psrval 14624 psrbasg 14632 psrplusgg 14636 lmfval 14860 txbasex 14925 txopn 14933 txcn 14943 txrest 14944 blfvalps 15053 xmetxp 15175 limccnp2lem 15344 limccnp2cntop 15345 dvfvalap 15349 |
| Copyright terms: Public domain | W3C validator |