| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4786 |
. 2
| |
| 2 | unexg 4489 |
. . 3
| |
| 3 | pwexg 4223 |
. . 3
| |
| 4 | pwexg 4223 |
. . 3
| |
| 5 | 2, 3, 4 | 3syl 17 |
. 2
|
| 6 | ssexg 4182 |
. 2
| |
| 7 | 1, 5, 6 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-opab 4105 df-xp 4680 |
| This theorem is referenced by: xpex 4789 sqxpexg 4790 resiexg 5003 cnvexg 5219 coexg 5226 fex2 5443 fabexg 5462 resfunexgALT 6192 cofunexg 6193 fnexALT 6195 funexw 6196 opabex3d 6205 opabex3 6206 oprabexd 6211 ofmresex 6221 mpoexxg 6295 tposexg 6343 erex 6643 pmex 6739 mapex 6740 pmvalg 6745 elpmg 6750 fvdiagfn 6779 ixpexgg 6808 ixpsnf1o 6822 map1 6903 xpdom2 6925 xpdom3m 6928 xpen 6941 mapxpen 6944 xpfi 7028 djuex 7144 djuassen 7328 cc2lem 7377 shftfvalg 11100 climconst2 11573 prdsval 13076 prdsbaslemss 13077 pwsval 13094 pwsbas 13095 mulgnngsum 13434 releqgg 13527 eqgex 13528 eqgfval 13529 reldvdsrsrg 13825 dvdsrvald 13826 dvdsrex 13831 aprval 14015 aprap 14019 psrval 14399 psrbasg 14407 psrplusgg 14411 lmfval 14635 txbasex 14700 txopn 14708 txcn 14718 txrest 14719 blfvalps 14828 xmetxp 14950 limccnp2lem 15119 limccnp2cntop 15120 dvfvalap 15124 |
| Copyright terms: Public domain | W3C validator |