| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4805 |
. 2
| |
| 2 | unexg 4508 |
. . 3
| |
| 3 | pwexg 4240 |
. . 3
| |
| 4 | pwexg 4240 |
. . 3
| |
| 5 | 2, 3, 4 | 3syl 17 |
. 2
|
| 6 | ssexg 4199 |
. 2
| |
| 7 | 1, 5, 6 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: xpex 4808 sqxpexg 4809 resiexg 5023 cnvexg 5239 coexg 5246 fex2 5464 fabexg 5485 resfunexgALT 6216 cofunexg 6217 fnexALT 6219 funexw 6220 opabex3d 6229 opabex3 6230 oprabexd 6235 ofmresex 6245 mpoexxg 6319 tposexg 6367 erex 6667 pmex 6763 mapex 6764 pmvalg 6769 elpmg 6774 fvdiagfn 6803 ixpexgg 6832 ixpsnf1o 6846 map1 6928 xpdom2 6951 xpdom3m 6954 xpen 6967 mapxpen 6970 xpfi 7055 djuex 7171 djuassen 7360 cc2lem 7413 shftfvalg 11244 climconst2 11717 prdsval 13220 prdsbaslemss 13221 pwsval 13238 pwsbas 13239 mulgnngsum 13578 releqgg 13671 eqgex 13672 eqgfval 13673 reldvdsrsrg 13969 dvdsrvald 13970 dvdsrex 13975 aprval 14159 aprap 14163 psrval 14543 psrbasg 14551 psrplusgg 14555 lmfval 14779 txbasex 14844 txopn 14852 txcn 14862 txrest 14863 blfvalps 14972 xmetxp 15094 limccnp2lem 15263 limccnp2cntop 15264 dvfvalap 15268 |
| Copyright terms: Public domain | W3C validator |