| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpexg | Unicode version | ||
| Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| xpexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4787 |
. 2
| |
| 2 | unexg 4490 |
. . 3
| |
| 3 | pwexg 4224 |
. . 3
| |
| 4 | pwexg 4224 |
. . 3
| |
| 5 | 2, 3, 4 | 3syl 17 |
. 2
|
| 6 | ssexg 4183 |
. 2
| |
| 7 | 1, 5, 6 | sylancr 414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: xpex 4790 sqxpexg 4791 resiexg 5004 cnvexg 5220 coexg 5227 fex2 5444 fabexg 5463 resfunexgALT 6193 cofunexg 6194 fnexALT 6196 funexw 6197 opabex3d 6206 opabex3 6207 oprabexd 6212 ofmresex 6222 mpoexxg 6296 tposexg 6344 erex 6644 pmex 6740 mapex 6741 pmvalg 6746 elpmg 6751 fvdiagfn 6780 ixpexgg 6809 ixpsnf1o 6823 map1 6904 xpdom2 6926 xpdom3m 6929 xpen 6942 mapxpen 6945 xpfi 7029 djuex 7145 djuassen 7329 cc2lem 7378 shftfvalg 11129 climconst2 11602 prdsval 13105 prdsbaslemss 13106 pwsval 13123 pwsbas 13124 mulgnngsum 13463 releqgg 13556 eqgex 13557 eqgfval 13558 reldvdsrsrg 13854 dvdsrvald 13855 dvdsrex 13860 aprval 14044 aprap 14048 psrval 14428 psrbasg 14436 psrplusgg 14440 lmfval 14664 txbasex 14729 txopn 14737 txcn 14747 txrest 14748 blfvalps 14857 xmetxp 14979 limccnp2lem 15148 limccnp2cntop 15149 dvfvalap 15153 |
| Copyright terms: Public domain | W3C validator |