Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpexg | Unicode version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
xpexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsspw 4716 | . 2 | |
2 | unexg 4421 | . . 3 | |
3 | pwexg 4159 | . . 3 | |
4 | pwexg 4159 | . . 3 | |
5 | 2, 3, 4 | 3syl 17 | . 2 |
6 | ssexg 4121 | . 2 | |
7 | 1, 5, 6 | sylancr 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 cvv 2726 cun 3114 wss 3116 cpw 3559 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-opab 4044 df-xp 4610 |
This theorem is referenced by: xpex 4719 sqxpexg 4720 resiexg 4929 cnvexg 5141 coexg 5148 fex2 5356 fabexg 5375 resfunexgALT 6076 cofunexg 6077 fnexALT 6079 funexw 6080 opabex3d 6089 opabex3 6090 oprabexd 6095 ofmresex 6105 mpoexxg 6178 tposexg 6226 erex 6525 pmex 6619 mapex 6620 pmvalg 6625 elpmg 6630 fvdiagfn 6659 ixpexgg 6688 ixpsnf1o 6702 map1 6778 xpdom2 6797 xpdom3m 6800 xpen 6811 mapxpen 6814 xpfi 6895 djuex 7008 djuassen 7173 cc2lem 7207 shftfvalg 10760 climconst2 11232 lmfval 12832 txbasex 12897 txopn 12905 txcn 12915 txrest 12916 blfvalps 13025 xmetxp 13147 limccnp2lem 13285 limccnp2cntop 13286 dvfvalap 13290 |
Copyright terms: Public domain | W3C validator |