ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfld Unicode version

Theorem relfld 5149
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
relfld  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )

Proof of Theorem relfld
StepHypRef Expression
1 relssdmrn 5141 . . . 4  |-  ( Rel 
R  ->  R  C_  ( dom  R  X.  ran  R
) )
2 uniss 3826 . . . 4  |-  ( R 
C_  ( dom  R  X.  ran  R )  ->  U. R  C_  U. ( dom  R  X.  ran  R
) )
3 uniss 3826 . . . 4  |-  ( U. R  C_  U. ( dom 
R  X.  ran  R
)  ->  U. U. R  C_ 
U. U. ( dom  R  X.  ran  R ) )
41, 2, 33syl 17 . . 3  |-  ( Rel 
R  ->  U. U. R  C_ 
U. U. ( dom  R  X.  ran  R ) )
5 unixpss 4733 . . 3  |-  U. U. ( dom  R  X.  ran  R )  C_  ( dom  R  u.  ran  R )
64, 5sstrdi 3165 . 2  |-  ( Rel 
R  ->  U. U. R  C_  ( dom  R  u.  ran  R ) )
7 dmrnssfld 4883 . . 3  |-  ( dom 
R  u.  ran  R
)  C_  U. U. R
87a1i 9 . 2  |-  ( Rel 
R  ->  ( dom  R  u.  ran  R ) 
C_  U. U. R )
96, 8eqssd 3170 1  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    u. cun 3125    C_ wss 3127   U.cuni 3805    X. cxp 4618   dom cdm 4620   ran crn 4621   Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-xp 4626  df-rel 4627  df-cnv 4628  df-dm 4630  df-rn 4631
This theorem is referenced by:  relresfld  5150  relcoi1  5152  unidmrn  5153  relcnvfld  5154  unixpm  5156
  Copyright terms: Public domain W3C validator