ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relfld Unicode version

Theorem relfld 5230
Description: The double union of a relation is its field. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
relfld  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )

Proof of Theorem relfld
StepHypRef Expression
1 relssdmrn 5222 . . . 4  |-  ( Rel 
R  ->  R  C_  ( dom  R  X.  ran  R
) )
2 uniss 3885 . . . 4  |-  ( R 
C_  ( dom  R  X.  ran  R )  ->  U. R  C_  U. ( dom  R  X.  ran  R
) )
3 uniss 3885 . . . 4  |-  ( U. R  C_  U. ( dom 
R  X.  ran  R
)  ->  U. U. R  C_ 
U. U. ( dom  R  X.  ran  R ) )
41, 2, 33syl 17 . . 3  |-  ( Rel 
R  ->  U. U. R  C_ 
U. U. ( dom  R  X.  ran  R ) )
5 unixpss 4806 . . 3  |-  U. U. ( dom  R  X.  ran  R )  C_  ( dom  R  u.  ran  R )
64, 5sstrdi 3213 . 2  |-  ( Rel 
R  ->  U. U. R  C_  ( dom  R  u.  ran  R ) )
7 dmrnssfld 4960 . . 3  |-  ( dom 
R  u.  ran  R
)  C_  U. U. R
87a1i 9 . 2  |-  ( Rel 
R  ->  ( dom  R  u.  ran  R ) 
C_  U. U. R )
96, 8eqssd 3218 1  |-  ( Rel 
R  ->  U. U. R  =  ( dom  R  u.  ran  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    u. cun 3172    C_ wss 3174   U.cuni 3864    X. cxp 4691   dom cdm 4693   ran crn 4694   Rel wrel 4698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  relresfld  5231  relcoi1  5233  unidmrn  5234  relcnvfld  5235  unixpm  5237
  Copyright terms: Public domain W3C validator