ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss GIF version

Theorem unixpss 4717
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss (𝐴 × 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4716 . . . . 5 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
21unissi 3812 . . . 4 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
3 unipw 4195 . . . 4 𝒫 𝒫 (𝐴𝐵) = 𝒫 (𝐴𝐵)
42, 3sseqtri 3176 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
54unissi 3812 . 2 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
6 unipw 4195 . 2 𝒫 (𝐴𝐵) = (𝐴𝐵)
75, 6sseqtri 3176 1 (𝐴 × 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  cun 3114  wss 3116  𝒫 cpw 3559   cuni 3789   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-opab 4044  df-xp 4610
This theorem is referenced by:  relfld  5132
  Copyright terms: Public domain W3C validator