ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss GIF version

Theorem unixpss 4773
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss (𝐴 × 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4772 . . . . 5 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
21unissi 3859 . . . 4 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
3 unipw 4247 . . . 4 𝒫 𝒫 (𝐴𝐵) = 𝒫 (𝐴𝐵)
42, 3sseqtri 3214 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
54unissi 3859 . 2 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
6 unipw 4247 . 2 𝒫 (𝐴𝐵) = (𝐴𝐵)
75, 6sseqtri 3214 1 (𝐴 × 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  cun 3152  wss 3154  𝒫 cpw 3602   cuni 3836   × cxp 4658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-opab 4092  df-xp 4666
This theorem is referenced by:  relfld  5195
  Copyright terms: Public domain W3C validator