ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unixpss GIF version

Theorem unixpss 4741
Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unixpss (𝐴 × 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem unixpss
StepHypRef Expression
1 xpsspw 4740 . . . . 5 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
21unissi 3834 . . . 4 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
3 unipw 4219 . . . 4 𝒫 𝒫 (𝐴𝐵) = 𝒫 (𝐴𝐵)
42, 3sseqtri 3191 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
54unissi 3834 . 2 (𝐴 × 𝐵) ⊆ 𝒫 (𝐴𝐵)
6 unipw 4219 . 2 𝒫 (𝐴𝐵) = (𝐴𝐵)
75, 6sseqtri 3191 1 (𝐴 × 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  cun 3129  wss 3131  𝒫 cpw 3577   cuni 3811   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-opab 4067  df-xp 4634
This theorem is referenced by:  relfld  5159
  Copyright terms: Public domain W3C validator