| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unixpss | GIF version | ||
| Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| unixpss | ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4775 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | 1 | unissi 3862 | . . . 4 ⊢ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) |
| 3 | unipw 4250 | . . . 4 ⊢ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) = 𝒫 (𝐴 ∪ 𝐵) | |
| 4 | 2, 3 | sseqtri 3217 | . . 3 ⊢ ∪ (𝐴 × 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| 5 | 4 | unissi 3862 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 (𝐴 ∪ 𝐵) |
| 6 | unipw 4250 | . 2 ⊢ ∪ 𝒫 (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
| 7 | 5, 6 | sseqtri 3217 | 1 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3155 ⊆ wss 3157 𝒫 cpw 3605 ∪ cuni 3839 × cxp 4661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-opab 4095 df-xp 4669 |
| This theorem is referenced by: relfld 5198 |
| Copyright terms: Public domain | W3C validator |