| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unixpss | GIF version | ||
| Description: The double class union of a cross product is included in the union of its arguments. (Contributed by NM, 16-Sep-2006.) |
| Ref | Expression |
|---|---|
| unixpss | ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw 4831 | . . . . 5 ⊢ (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝐵) | |
| 2 | 1 | unissi 3911 | . . . 4 ⊢ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) |
| 3 | unipw 4303 | . . . 4 ⊢ ∪ 𝒫 𝒫 (𝐴 ∪ 𝐵) = 𝒫 (𝐴 ∪ 𝐵) | |
| 4 | 2, 3 | sseqtri 3258 | . . 3 ⊢ ∪ (𝐴 × 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| 5 | 4 | unissi 3911 | . 2 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ ∪ 𝒫 (𝐴 ∪ 𝐵) |
| 6 | unipw 4303 | . 2 ⊢ ∪ 𝒫 (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
| 7 | 5, 6 | sseqtri 3258 | 1 ⊢ ∪ ∪ (𝐴 × 𝐵) ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3195 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3888 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: relfld 5257 |
| Copyright terms: Public domain | W3C validator |