ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unopn Unicode version

Theorem unopn 14592
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unopn  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )

Proof of Theorem unopn
StepHypRef Expression
1 uniprg 3879 . . 3  |-  ( ( A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  =  ( A  u.  B )
)
213adant1 1018 . 2  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  =  ( A  u.  B )
)
3 prssi 3802 . . . 4  |-  ( ( A  e.  J  /\  B  e.  J )  ->  { A ,  B }  C_  J )
4 uniopn 14588 . . . 4  |-  ( ( J  e.  Top  /\  { A ,  B }  C_  J )  ->  U. { A ,  B }  e.  J )
53, 4sylan2 286 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  J  /\  B  e.  J
) )  ->  U. { A ,  B }  e.  J )
653impb 1202 . 2  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  e.  J
)
72, 6eqeltrrd 2285 1  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178    u. cun 3172    C_ wss 3174   {cpr 3644   U.cuni 3864   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-top 14585
This theorem is referenced by:  reopnap  15133
  Copyright terms: Public domain W3C validator