Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unopn | Unicode version |
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
unopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg 3804 | . . 3 | |
2 | 1 | 3adant1 1005 | . 2 |
3 | prssi 3731 | . . . 4 | |
4 | uniopn 12639 | . . . 4 | |
5 | 3, 4 | sylan2 284 | . . 3 |
6 | 5 | 3impb 1189 | . 2 |
7 | 2, 6 | eqeltrrd 2244 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cun 3114 wss 3116 cpr 3577 cuni 3789 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-top 12636 |
This theorem is referenced by: reopnap 13178 |
Copyright terms: Public domain | W3C validator |