ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unopn Unicode version

Theorem unopn 12643
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unopn  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )

Proof of Theorem unopn
StepHypRef Expression
1 uniprg 3804 . . 3  |-  ( ( A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  =  ( A  u.  B )
)
213adant1 1005 . 2  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  =  ( A  u.  B )
)
3 prssi 3731 . . . 4  |-  ( ( A  e.  J  /\  B  e.  J )  ->  { A ,  B }  C_  J )
4 uniopn 12639 . . . 4  |-  ( ( J  e.  Top  /\  { A ,  B }  C_  J )  ->  U. { A ,  B }  e.  J )
53, 4sylan2 284 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  J  /\  B  e.  J
) )  ->  U. { A ,  B }  e.  J )
653impb 1189 . 2  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  e.  J
)
72, 6eqeltrrd 2244 1  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136    u. cun 3114    C_ wss 3116   {cpr 3577   U.cuni 3789   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-sep 4100
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-top 12636
This theorem is referenced by:  reopnap  13178
  Copyright terms: Public domain W3C validator