| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unopn | Unicode version | ||
| Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| unopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 3855 |
. . 3
| |
| 2 | 1 | 3adant1 1017 |
. 2
|
| 3 | prssi 3781 |
. . . 4
| |
| 4 | uniopn 14321 |
. . . 4
| |
| 5 | 3, 4 | sylan2 286 |
. . 3
|
| 6 | 5 | 3impb 1201 |
. 2
|
| 7 | 2, 6 | eqeltrrd 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-top 14318 |
| This theorem is referenced by: reopnap 14866 |
| Copyright terms: Public domain | W3C validator |