ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unopn Unicode version

Theorem unopn 12718
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unopn  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )

Proof of Theorem unopn
StepHypRef Expression
1 uniprg 3809 . . 3  |-  ( ( A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  =  ( A  u.  B )
)
213adant1 1010 . 2  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  =  ( A  u.  B )
)
3 prssi 3736 . . . 4  |-  ( ( A  e.  J  /\  B  e.  J )  ->  { A ,  B }  C_  J )
4 uniopn 12714 . . . 4  |-  ( ( J  e.  Top  /\  { A ,  B }  C_  J )  ->  U. { A ,  B }  e.  J )
53, 4sylan2 284 . . 3  |-  ( ( J  e.  Top  /\  ( A  e.  J  /\  B  e.  J
) )  ->  U. { A ,  B }  e.  J )
653impb 1194 . 2  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  U. { A ,  B }  e.  J
)
72, 6eqeltrrd 2248 1  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141    u. cun 3119    C_ wss 3121   {cpr 3582   U.cuni 3794   Topctop 12710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4105
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-uni 3795  df-top 12711
This theorem is referenced by:  reopnap  13253
  Copyright terms: Public domain W3C validator