ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniprg Unicode version

Theorem uniprg 3854
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.)
Assertion
Ref Expression
uniprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. { A ,  B }  =  ( A  u.  B )
)

Proof of Theorem uniprg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3699 . . . 4  |-  ( x  =  A  ->  { x ,  y }  =  { A ,  y } )
21unieqd 3850 . . 3  |-  ( x  =  A  ->  U. {
x ,  y }  =  U. { A ,  y } )
3 uneq1 3310 . . 3  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
42, 3eqeq12d 2211 . 2  |-  ( x  =  A  ->  ( U. { x ,  y }  =  ( x  u.  y )  <->  U. { A ,  y }  =  ( A  u.  y
) ) )
5 preq2 3700 . . . 4  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
65unieqd 3850 . . 3  |-  ( y  =  B  ->  U. { A ,  y }  =  U. { A ,  B } )
7 uneq2 3311 . . 3  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
86, 7eqeq12d 2211 . 2  |-  ( y  =  B  ->  ( U. { A ,  y }  =  ( A  u.  y )  <->  U. { A ,  B }  =  ( A  u.  B ) ) )
9 vex 2766 . . 3  |-  x  e. 
_V
10 vex 2766 . . 3  |-  y  e. 
_V
119, 10unipr 3853 . 2  |-  U. {
x ,  y }  =  ( x  u.  y )
124, 8, 11vtocl2g 2828 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. { A ,  B }  =  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    u. cun 3155   {cpr 3623   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by:  onun2  4526  unopn  14241
  Copyright terms: Public domain W3C validator