ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniprg Unicode version

Theorem uniprg 3759
Description: The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.)
Assertion
Ref Expression
uniprg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. { A ,  B }  =  ( A  u.  B )
)

Proof of Theorem uniprg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq1 3608 . . . 4  |-  ( x  =  A  ->  { x ,  y }  =  { A ,  y } )
21unieqd 3755 . . 3  |-  ( x  =  A  ->  U. {
x ,  y }  =  U. { A ,  y } )
3 uneq1 3228 . . 3  |-  ( x  =  A  ->  (
x  u.  y )  =  ( A  u.  y ) )
42, 3eqeq12d 2155 . 2  |-  ( x  =  A  ->  ( U. { x ,  y }  =  ( x  u.  y )  <->  U. { A ,  y }  =  ( A  u.  y
) ) )
5 preq2 3609 . . . 4  |-  ( y  =  B  ->  { A ,  y }  =  { A ,  B }
)
65unieqd 3755 . . 3  |-  ( y  =  B  ->  U. { A ,  y }  =  U. { A ,  B } )
7 uneq2 3229 . . 3  |-  ( y  =  B  ->  ( A  u.  y )  =  ( A  u.  B ) )
86, 7eqeq12d 2155 . 2  |-  ( y  =  B  ->  ( U. { A ,  y }  =  ( A  u.  y )  <->  U. { A ,  B }  =  ( A  u.  B ) ) )
9 vex 2692 . . 3  |-  x  e. 
_V
10 vex 2692 . . 3  |-  y  e. 
_V
119, 10unipr 3758 . 2  |-  U. {
x ,  y }  =  ( x  u.  y )
124, 8, 11vtocl2g 2753 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. { A ,  B }  =  ( A  u.  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    u. cun 3074   {cpr 3533   U.cuni 3744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rex 2423  df-v 2691  df-un 3080  df-sn 3538  df-pr 3539  df-uni 3745
This theorem is referenced by:  onun2  4414  unopn  12211
  Copyright terms: Public domain W3C validator