| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unopn | GIF version | ||
| Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| unopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 3855 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | 1 | 3adant1 1017 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 3 | prssi 3781 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → {𝐴, 𝐵} ⊆ 𝐽) | |
| 4 | uniopn 14321 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ {𝐴, 𝐵} ⊆ 𝐽) → ∪ {𝐴, 𝐵} ∈ 𝐽) | |
| 5 | 3, 4 | sylan2 286 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽)) → ∪ {𝐴, 𝐵} ∈ 𝐽) |
| 6 | 5 | 3impb 1201 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} ∈ 𝐽) |
| 7 | 2, 6 | eqeltrrd 2274 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 {cpr 3624 ∪ cuni 3840 Topctop 14317 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-top 14318 |
| This theorem is referenced by: reopnap 14866 |
| Copyright terms: Public domain | W3C validator |