| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unopn | GIF version | ||
| Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| unopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 3868 | . . 3 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | 1 | 3adant1 1018 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 3 | prssi 3794 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → {𝐴, 𝐵} ⊆ 𝐽) | |
| 4 | uniopn 14523 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ {𝐴, 𝐵} ⊆ 𝐽) → ∪ {𝐴, 𝐵} ∈ 𝐽) | |
| 5 | 3, 4 | sylan2 286 | . . 3 ⊢ ((𝐽 ∈ Top ∧ (𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽)) → ∪ {𝐴, 𝐵} ∈ 𝐽) |
| 6 | 5 | 3impb 1202 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → ∪ {𝐴, 𝐵} ∈ 𝐽) |
| 7 | 2, 6 | eqeltrrd 2284 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∪ 𝐵) ∈ 𝐽) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∪ cun 3166 ⊆ wss 3168 {cpr 3636 ∪ cuni 3853 Topctop 14519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4167 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-uni 3854 df-top 14520 |
| This theorem is referenced by: reopnap 15068 |
| Copyright terms: Public domain | W3C validator |