ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unopn GIF version

Theorem unopn 14664
Description: The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
unopn ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)

Proof of Theorem unopn
StepHypRef Expression
1 uniprg 3902 . . 3 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1039 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} = (𝐴𝐵))
3 prssi 3825 . . . 4 ((𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} ⊆ 𝐽)
4 uniopn 14660 . . . 4 ((𝐽 ∈ Top ∧ {𝐴, 𝐵} ⊆ 𝐽) → {𝐴, 𝐵} ∈ 𝐽)
53, 4sylan2 286 . . 3 ((𝐽 ∈ Top ∧ (𝐴𝐽𝐵𝐽)) → {𝐴, 𝐵} ∈ 𝐽)
653impb 1223 . 2 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → {𝐴, 𝐵} ∈ 𝐽)
72, 6eqeltrrd 2307 1 ((𝐽 ∈ Top ∧ 𝐴𝐽𝐵𝐽) → (𝐴𝐵) ∈ 𝐽)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cun 3195  wss 3197  {cpr 3667   cuni 3887  Topctop 14656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4201
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-top 14657
This theorem is referenced by:  reopnap  15205
  Copyright terms: Public domain W3C validator