| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiinopn | Unicode version | ||
| Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
| Ref | Expression |
|---|---|
| fiinopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 3624 |
. . . . . . 7
| |
| 2 | sseq1 3216 |
. . . . . . . . . . . . . 14
| |
| 3 | neeq1 2389 |
. . . . . . . . . . . . . 14
| |
| 4 | eleq1 2268 |
. . . . . . . . . . . . . 14
| |
| 5 | 2, 3, 4 | 3anbi123d 1325 |
. . . . . . . . . . . . 13
|
| 6 | inteq 3888 |
. . . . . . . . . . . . . . 15
| |
| 7 | 6 | eleq1d 2274 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | imbi2d 230 |
. . . . . . . . . . . . 13
|
| 9 | 5, 8 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 10 | sp 1534 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | adantl 277 |
. . . . . . . . . . . . 13
|
| 12 | istopfin 14505 |
. . . . . . . . . . . . 13
| |
| 13 | 11, 12 | syl11 31 |
. . . . . . . . . . . 12
|
| 14 | 9, 13 | vtoclg 2833 |
. . . . . . . . . . 11
|
| 15 | 14 | com12 30 |
. . . . . . . . . 10
|
| 16 | 15 | 3exp 1205 |
. . . . . . . . 9
|
| 17 | 16 | com3r 79 |
. . . . . . . 8
|
| 18 | 17 | com4r 86 |
. . . . . . 7
|
| 19 | 1, 18 | biimtrrdi 164 |
. . . . . 6
|
| 20 | 19 | pm2.43a 51 |
. . . . 5
|
| 21 | 20 | com4l 84 |
. . . 4
|
| 22 | 21 | pm2.43i 49 |
. . 3
|
| 23 | 22 | 3imp 1196 |
. 2
|
| 24 | 23 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-er 6622 df-en 6830 df-fin 6832 df-top 14503 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |