ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiinopn Unicode version

Theorem fiinopn 12642
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
Assertion
Ref Expression
fiinopn  |-  ( J  e.  Top  ->  (
( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )

Proof of Theorem fiinopn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elpwg 3567 . . . . . . 7  |-  ( A  e.  Fin  ->  ( A  e.  ~P J  <->  A 
C_  J ) )
2 sseq1 3165 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
x  C_  J  <->  A  C_  J
) )
3 neeq1 2349 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
x  =/=  (/)  <->  A  =/=  (/) ) )
4 eleq1 2229 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
x  e.  Fin  <->  A  e.  Fin ) )
52, 3, 43anbi123d 1302 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  <->  ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin ) ) )
6 inteq 3827 . . . . . . . . . . . . . . 15  |-  ( x  =  A  ->  |^| x  =  |^| A )
76eleq1d 2235 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  ( |^| x  e.  J  <->  |^| A  e.  J ) )
87imbi2d 229 . . . . . . . . . . . . 13  |-  ( x  =  A  ->  (
( J  e.  Top  ->  |^| x  e.  J
)  <->  ( J  e. 
Top  ->  |^| A  e.  J
) ) )
95, 8imbi12d 233 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  ( J  e.  Top  ->  |^| x  e.  J ) )  <->  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) )
10 sp 1499 . . . . . . . . . . . . . 14  |-  ( A. x ( ( x 
C_  J  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  J )  ->  (
( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) )
1110adantl 275 . . . . . . . . . . . . 13  |-  ( ( A. x ( x 
C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
C_  J  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  J ) )  -> 
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) )
12 istopfin 12638 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  ( A. x ( x  C_  J  ->  U. x  e.  J
)  /\  A. x
( ( x  C_  J  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
1311, 12syl11 31 . . . . . . . . . . . 12  |-  ( ( x  C_  J  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  ( J  e.  Top  ->  |^| x  e.  J ) )
149, 13vtoclg 2786 . . . . . . . . . . 11  |-  ( A  e.  ~P J  -> 
( ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) )
1514com12 30 . . . . . . . . . 10  |-  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( A  e.  ~P J  ->  ( J  e.  Top  ->  |^| A  e.  J
) ) )
16153exp 1192 . . . . . . . . 9  |-  ( A 
C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  Fin  ->  ( A  e.  ~P J  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
1716com3r 79 . . . . . . . 8  |-  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  ~P J  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
1817com4r 86 . . . . . . 7  |-  ( A  e.  ~P J  -> 
( A  e.  Fin  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
191, 18syl6bir 163 . . . . . 6  |-  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) ) )
2019pm2.43a 51 . . . . 5  |-  ( A  e.  Fin  ->  ( A  C_  J  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
2120com4l 84 . . . 4  |-  ( A 
C_  J  ->  ( A  C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  Fin  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) ) )
2221pm2.43i 49 . . 3  |-  ( A 
C_  J  ->  ( A  =/=  (/)  ->  ( A  e.  Fin  ->  ( J  e.  Top  ->  |^| A  e.  J ) ) ) )
23223imp 1183 . 2  |-  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e. 
Fin )  ->  ( J  e.  Top  ->  |^| A  e.  J ) )
2423com12 30 1  |-  ( J  e.  Top  ->  (
( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968   A.wal 1341    = wceq 1343    e. wcel 2136    =/= wne 2336    C_ wss 3116   (/)c0 3409   ~Pcpw 3559   U.cuni 3789   |^|cint 3824   Fincfn 6706   Topctop 12635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709  df-top 12636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator