Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiinopn | Unicode version |
Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
Ref | Expression |
---|---|
fiinopn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwg 3567 | . . . . . . 7 | |
2 | sseq1 3165 | . . . . . . . . . . . . . 14 | |
3 | neeq1 2349 | . . . . . . . . . . . . . 14 | |
4 | eleq1 2229 | . . . . . . . . . . . . . 14 | |
5 | 2, 3, 4 | 3anbi123d 1302 | . . . . . . . . . . . . 13 |
6 | inteq 3827 | . . . . . . . . . . . . . . 15 | |
7 | 6 | eleq1d 2235 | . . . . . . . . . . . . . 14 |
8 | 7 | imbi2d 229 | . . . . . . . . . . . . 13 |
9 | 5, 8 | imbi12d 233 | . . . . . . . . . . . 12 |
10 | sp 1499 | . . . . . . . . . . . . . 14 | |
11 | 10 | adantl 275 | . . . . . . . . . . . . 13 |
12 | istopfin 12638 | . . . . . . . . . . . . 13 | |
13 | 11, 12 | syl11 31 | . . . . . . . . . . . 12 |
14 | 9, 13 | vtoclg 2786 | . . . . . . . . . . 11 |
15 | 14 | com12 30 | . . . . . . . . . 10 |
16 | 15 | 3exp 1192 | . . . . . . . . 9 |
17 | 16 | com3r 79 | . . . . . . . 8 |
18 | 17 | com4r 86 | . . . . . . 7 |
19 | 1, 18 | syl6bir 163 | . . . . . 6 |
20 | 19 | pm2.43a 51 | . . . . 5 |
21 | 20 | com4l 84 | . . . 4 |
22 | 21 | pm2.43i 49 | . . 3 |
23 | 22 | 3imp 1183 | . 2 |
24 | 23 | com12 30 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wal 1341 wceq 1343 wcel 2136 wne 2336 wss 3116 c0 3409 cpw 3559 cuni 3789 cint 3824 cfn 6706 ctop 12635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-er 6501 df-en 6707 df-fin 6709 df-top 12636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |