| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiinopn | Unicode version | ||
| Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
| Ref | Expression |
|---|---|
| fiinopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 3657 |
. . . . . . 7
| |
| 2 | sseq1 3247 |
. . . . . . . . . . . . . 14
| |
| 3 | neeq1 2413 |
. . . . . . . . . . . . . 14
| |
| 4 | eleq1 2292 |
. . . . . . . . . . . . . 14
| |
| 5 | 2, 3, 4 | 3anbi123d 1346 |
. . . . . . . . . . . . 13
|
| 6 | inteq 3926 |
. . . . . . . . . . . . . . 15
| |
| 7 | 6 | eleq1d 2298 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | imbi2d 230 |
. . . . . . . . . . . . 13
|
| 9 | 5, 8 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 10 | sp 1557 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | adantl 277 |
. . . . . . . . . . . . 13
|
| 12 | istopfin 14674 |
. . . . . . . . . . . . 13
| |
| 13 | 11, 12 | syl11 31 |
. . . . . . . . . . . 12
|
| 14 | 9, 13 | vtoclg 2861 |
. . . . . . . . . . 11
|
| 15 | 14 | com12 30 |
. . . . . . . . . 10
|
| 16 | 15 | 3exp 1226 |
. . . . . . . . 9
|
| 17 | 16 | com3r 79 |
. . . . . . . 8
|
| 18 | 17 | com4r 86 |
. . . . . . 7
|
| 19 | 1, 18 | biimtrrdi 164 |
. . . . . 6
|
| 20 | 19 | pm2.43a 51 |
. . . . 5
|
| 21 | 20 | com4l 84 |
. . . 4
|
| 22 | 21 | pm2.43i 49 |
. . 3
|
| 23 | 22 | 3imp 1217 |
. 2
|
| 24 | 23 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6680 df-en 6888 df-fin 6890 df-top 14672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |