| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiinopn | Unicode version | ||
| Description: The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.) |
| Ref | Expression |
|---|---|
| fiinopn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 3634 |
. . . . . . 7
| |
| 2 | sseq1 3224 |
. . . . . . . . . . . . . 14
| |
| 3 | neeq1 2391 |
. . . . . . . . . . . . . 14
| |
| 4 | eleq1 2270 |
. . . . . . . . . . . . . 14
| |
| 5 | 2, 3, 4 | 3anbi123d 1325 |
. . . . . . . . . . . . 13
|
| 6 | inteq 3902 |
. . . . . . . . . . . . . . 15
| |
| 7 | 6 | eleq1d 2276 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | imbi2d 230 |
. . . . . . . . . . . . 13
|
| 9 | 5, 8 | imbi12d 234 |
. . . . . . . . . . . 12
|
| 10 | sp 1535 |
. . . . . . . . . . . . . 14
| |
| 11 | 10 | adantl 277 |
. . . . . . . . . . . . 13
|
| 12 | istopfin 14587 |
. . . . . . . . . . . . 13
| |
| 13 | 11, 12 | syl11 31 |
. . . . . . . . . . . 12
|
| 14 | 9, 13 | vtoclg 2838 |
. . . . . . . . . . 11
|
| 15 | 14 | com12 30 |
. . . . . . . . . 10
|
| 16 | 15 | 3exp 1205 |
. . . . . . . . 9
|
| 17 | 16 | com3r 79 |
. . . . . . . 8
|
| 18 | 17 | com4r 86 |
. . . . . . 7
|
| 19 | 1, 18 | biimtrrdi 164 |
. . . . . 6
|
| 20 | 19 | pm2.43a 51 |
. . . . 5
|
| 21 | 20 | com4l 84 |
. . . 4
|
| 22 | 21 | pm2.43i 49 |
. . 3
|
| 23 | 22 | 3imp 1196 |
. 2
|
| 24 | 23 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-er 6643 df-en 6851 df-fin 6853 df-top 14585 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |