ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssbd GIF version

Theorem unssbd 3353
Description: If (𝐴𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 3349. Partial converse of unssd 3351. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Assertion
Ref Expression
unssbd (𝜑𝐵𝐶)

Proof of Theorem unssbd
StepHypRef Expression
1 unssad.1 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
2 unss 3349 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
31, 2sylibr 134 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
43simprd 114 1 (𝜑𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  cun 3166  wss 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3172  df-in 3174  df-ss 3181
This theorem is referenced by:  eldifpw  4529  ertr  6645  diffifi  7003  sumsplitdc  11793  fsum2dlemstep  11795  fsumabs  11826  fsumiun  11838  fprod2dlemstep  11983
  Copyright terms: Public domain W3C validator