ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph Unicode version

Theorem snexxph 7009
Description: A case where the antecedent of snexg 4213 is not needed. The class  { x  | 
ph } is from dcextest 4613. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph  |-  { {
x  |  ph } }  e.  _V
Distinct variable group:    ph, x

Proof of Theorem snexxph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1on 6476 . . 3  |-  1o  e.  On
21elexi 2772 . 2  |-  1o  e.  _V
3 elsni 3636 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  y  =  { x  | 
ph } )
4 vprc 4161 . . . . . . . 8  |-  -.  _V  e.  _V
5 df-v 2762 . . . . . . . . . 10  |-  _V  =  { x  |  x  =  x }
6 equid 1712 . . . . . . . . . . . 12  |-  x  =  x
7 pm5.1im 173 . . . . . . . . . . . 12  |-  ( x  =  x  ->  ( ph  ->  ( x  =  x  <->  ph ) ) )
86, 7ax-mp 5 . . . . . . . . . . 11  |-  ( ph  ->  ( x  =  x  <->  ph ) )
98abbidv 2311 . . . . . . . . . 10  |-  ( ph  ->  { x  |  x  =  x }  =  { x  |  ph }
)
105, 9eqtr2id 2239 . . . . . . . . 9  |-  ( ph  ->  { x  |  ph }  =  _V )
1110eleq1d 2262 . . . . . . . 8  |-  ( ph  ->  ( { x  | 
ph }  e.  _V  <->  _V  e.  _V ) )
124, 11mtbiri 676 . . . . . . 7  |-  ( ph  ->  -.  { x  | 
ph }  e.  _V )
13 19.8a 1601 . . . . . . . . 9  |-  ( y  =  { x  | 
ph }  ->  E. y 
y  =  { x  |  ph } )
143, 13syl 14 . . . . . . . 8  |-  ( y  e.  { { x  |  ph } }  ->  E. y  y  =  {
x  |  ph }
)
15 isset 2766 . . . . . . . 8  |-  ( { x  |  ph }  e.  _V  <->  E. y  y  =  { x  |  ph } )
1614, 15sylibr 134 . . . . . . 7  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  e.  _V )
1712, 16nsyl3 627 . . . . . 6  |-  ( y  e.  { { x  |  ph } }  ->  -. 
ph )
18 vex 2763 . . . . . . . . . 10  |-  y  e. 
_V
19 biidd 172 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
2018, 19elab 2904 . . . . . . . . 9  |-  ( y  e.  { x  | 
ph }  <->  ph )
2120notbii 669 . . . . . . . 8  |-  ( -.  y  e.  { x  |  ph }  <->  -.  ph )
2221biimpri 133 . . . . . . 7  |-  ( -. 
ph  ->  -.  y  e.  { x  |  ph }
)
2322eq0rdv 3491 . . . . . 6  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
2417, 23syl 14 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  =  (/) )
253, 24eqtrd 2226 . . . 4  |-  ( y  e.  { { x  |  ph } }  ->  y  =  (/) )
26 0lt1o 6493 . . . 4  |-  (/)  e.  1o
2725, 26eqeltrdi 2284 . . 3  |-  ( y  e.  { { x  |  ph } }  ->  y  e.  1o )
2827ssriv 3183 . 2  |-  { {
x  |  ph } }  C_  1o
292, 28ssexi 4167 1  |-  { {
x  |  ph } }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   _Vcvv 2760   (/)c0 3446   {csn 3618   Oncon0 4394   1oc1o 6462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator