ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph Unicode version

Theorem snexxph 6931
Description: A case where the antecedent of snexg 4171 is not needed. The class  { x  | 
ph } is from dcextest 4566. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph  |-  { {
x  |  ph } }  e.  _V
Distinct variable group:    ph, x

Proof of Theorem snexxph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1on 6406 . . 3  |-  1o  e.  On
21elexi 2743 . 2  |-  1o  e.  _V
3 elsni 3602 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  y  =  { x  | 
ph } )
4 vprc 4122 . . . . . . . 8  |-  -.  _V  e.  _V
5 df-v 2733 . . . . . . . . . 10  |-  _V  =  { x  |  x  =  x }
6 equid 1695 . . . . . . . . . . . 12  |-  x  =  x
7 pm5.1im 172 . . . . . . . . . . . 12  |-  ( x  =  x  ->  ( ph  ->  ( x  =  x  <->  ph ) ) )
86, 7ax-mp 5 . . . . . . . . . . 11  |-  ( ph  ->  ( x  =  x  <->  ph ) )
98abbidv 2289 . . . . . . . . . 10  |-  ( ph  ->  { x  |  x  =  x }  =  { x  |  ph }
)
105, 9eqtr2id 2217 . . . . . . . . 9  |-  ( ph  ->  { x  |  ph }  =  _V )
1110eleq1d 2240 . . . . . . . 8  |-  ( ph  ->  ( { x  | 
ph }  e.  _V  <->  _V  e.  _V ) )
124, 11mtbiri 671 . . . . . . 7  |-  ( ph  ->  -.  { x  | 
ph }  e.  _V )
13 19.8a 1584 . . . . . . . . 9  |-  ( y  =  { x  | 
ph }  ->  E. y 
y  =  { x  |  ph } )
143, 13syl 14 . . . . . . . 8  |-  ( y  e.  { { x  |  ph } }  ->  E. y  y  =  {
x  |  ph }
)
15 isset 2737 . . . . . . . 8  |-  ( { x  |  ph }  e.  _V  <->  E. y  y  =  { x  |  ph } )
1614, 15sylibr 133 . . . . . . 7  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  e.  _V )
1712, 16nsyl3 622 . . . . . 6  |-  ( y  e.  { { x  |  ph } }  ->  -. 
ph )
18 vex 2734 . . . . . . . . . 10  |-  y  e. 
_V
19 biidd 171 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
2018, 19elab 2875 . . . . . . . . 9  |-  ( y  e.  { x  | 
ph }  <->  ph )
2120notbii 664 . . . . . . . 8  |-  ( -.  y  e.  { x  |  ph }  <->  -.  ph )
2221biimpri 132 . . . . . . 7  |-  ( -. 
ph  ->  -.  y  e.  { x  |  ph }
)
2322eq0rdv 3460 . . . . . 6  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
2417, 23syl 14 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  =  (/) )
253, 24eqtrd 2204 . . . 4  |-  ( y  e.  { { x  |  ph } }  ->  y  =  (/) )
26 0lt1o 6423 . . . 4  |-  (/)  e.  1o
2725, 26eqeltrdi 2262 . . 3  |-  ( y  e.  { { x  |  ph } }  ->  y  e.  1o )
2827ssriv 3152 . 2  |-  { {
x  |  ph } }  C_  1o
292, 28ssexi 4128 1  |-  { {
x  |  ph } }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    = wceq 1349   E.wex 1486    e. wcel 2142   {cab 2157   _Vcvv 2731   (/)c0 3415   {csn 3584   Oncon0 4349   1oc1o 6392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419
This theorem depends on definitions:  df-bi 116  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ral 2454  df-rex 2455  df-v 2733  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-pw 3569  df-sn 3590  df-pr 3591  df-uni 3798  df-tr 4089  df-iord 4352  df-on 4354  df-suc 4357  df-1o 6399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator