Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snexxph | Unicode version |
Description: A case where the antecedent of snexg 4144 is not needed. The class is from dcextest 4538. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
snexxph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6364 | . . 3 | |
2 | 1 | elexi 2724 | . 2 |
3 | elsni 3578 | . . . . 5 | |
4 | vprc 4096 | . . . . . . . 8 | |
5 | df-v 2714 | . . . . . . . . . 10 | |
6 | equid 1681 | . . . . . . . . . . . 12 | |
7 | pm5.1im 172 | . . . . . . . . . . . 12 | |
8 | 6, 7 | ax-mp 5 | . . . . . . . . . . 11 |
9 | 8 | abbidv 2275 | . . . . . . . . . 10 |
10 | 5, 9 | syl5req 2203 | . . . . . . . . 9 |
11 | 10 | eleq1d 2226 | . . . . . . . 8 |
12 | 4, 11 | mtbiri 665 | . . . . . . 7 |
13 | 19.8a 1570 | . . . . . . . . 9 | |
14 | 3, 13 | syl 14 | . . . . . . . 8 |
15 | isset 2718 | . . . . . . . 8 | |
16 | 14, 15 | sylibr 133 | . . . . . . 7 |
17 | 12, 16 | nsyl3 616 | . . . . . 6 |
18 | vex 2715 | . . . . . . . . . 10 | |
19 | biidd 171 | . . . . . . . . . 10 | |
20 | 18, 19 | elab 2856 | . . . . . . . . 9 |
21 | 20 | notbii 658 | . . . . . . . 8 |
22 | 21 | biimpri 132 | . . . . . . 7 |
23 | 22 | eq0rdv 3438 | . . . . . 6 |
24 | 17, 23 | syl 14 | . . . . 5 |
25 | 3, 24 | eqtrd 2190 | . . . 4 |
26 | 0lt1o 6381 | . . . 4 | |
27 | 25, 26 | eqeltrdi 2248 | . . 3 |
28 | 27 | ssriv 3132 | . 2 |
29 | 2, 28 | ssexi 4102 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1335 wex 1472 wcel 2128 cab 2143 cvv 2712 c0 3394 csn 3560 con0 4322 c1o 6350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-iord 4325 df-on 4327 df-suc 4330 df-1o 6357 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |