ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph Unicode version

Theorem snexxph 7117
Description: A case where the antecedent of snexg 4268 is not needed. The class  { x  | 
ph } is from dcextest 4673. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph  |-  { {
x  |  ph } }  e.  _V
Distinct variable group:    ph, x

Proof of Theorem snexxph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1on 6569 . . 3  |-  1o  e.  On
21elexi 2812 . 2  |-  1o  e.  _V
3 elsni 3684 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  y  =  { x  | 
ph } )
4 vprc 4216 . . . . . . . 8  |-  -.  _V  e.  _V
5 df-v 2801 . . . . . . . . . 10  |-  _V  =  { x  |  x  =  x }
6 equid 1747 . . . . . . . . . . . 12  |-  x  =  x
7 pm5.1im 173 . . . . . . . . . . . 12  |-  ( x  =  x  ->  ( ph  ->  ( x  =  x  <->  ph ) ) )
86, 7ax-mp 5 . . . . . . . . . . 11  |-  ( ph  ->  ( x  =  x  <->  ph ) )
98abbidv 2347 . . . . . . . . . 10  |-  ( ph  ->  { x  |  x  =  x }  =  { x  |  ph }
)
105, 9eqtr2id 2275 . . . . . . . . 9  |-  ( ph  ->  { x  |  ph }  =  _V )
1110eleq1d 2298 . . . . . . . 8  |-  ( ph  ->  ( { x  | 
ph }  e.  _V  <->  _V  e.  _V ) )
124, 11mtbiri 679 . . . . . . 7  |-  ( ph  ->  -.  { x  | 
ph }  e.  _V )
13 19.8a 1636 . . . . . . . . 9  |-  ( y  =  { x  | 
ph }  ->  E. y 
y  =  { x  |  ph } )
143, 13syl 14 . . . . . . . 8  |-  ( y  e.  { { x  |  ph } }  ->  E. y  y  =  {
x  |  ph }
)
15 isset 2806 . . . . . . . 8  |-  ( { x  |  ph }  e.  _V  <->  E. y  y  =  { x  |  ph } )
1614, 15sylibr 134 . . . . . . 7  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  e.  _V )
1712, 16nsyl3 629 . . . . . 6  |-  ( y  e.  { { x  |  ph } }  ->  -. 
ph )
18 vex 2802 . . . . . . . . . 10  |-  y  e. 
_V
19 biidd 172 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
2018, 19elab 2947 . . . . . . . . 9  |-  ( y  e.  { x  | 
ph }  <->  ph )
2120notbii 672 . . . . . . . 8  |-  ( -.  y  e.  { x  |  ph }  <->  -.  ph )
2221biimpri 133 . . . . . . 7  |-  ( -. 
ph  ->  -.  y  e.  { x  |  ph }
)
2322eq0rdv 3536 . . . . . 6  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
2417, 23syl 14 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  =  (/) )
253, 24eqtrd 2262 . . . 4  |-  ( y  e.  { { x  |  ph } }  ->  y  =  (/) )
26 0lt1o 6586 . . . 4  |-  (/)  e.  1o
2725, 26eqeltrdi 2320 . . 3  |-  ( y  e.  { { x  |  ph } }  ->  y  e.  1o )
2827ssriv 3228 . 2  |-  { {
x  |  ph } }  C_  1o
292, 28ssexi 4222 1  |-  { {
x  |  ph } }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   _Vcvv 2799   (/)c0 3491   {csn 3666   Oncon0 4454   1oc1o 6555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462  df-1o 6562
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator