| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexxph | Unicode version | ||
| Description: A case where the
antecedent of snexg 4228 is not needed. The class
|
| Ref | Expression |
|---|---|
| snexxph |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6509 |
. . 3
| |
| 2 | 1 | elexi 2784 |
. 2
|
| 3 | elsni 3651 |
. . . . 5
| |
| 4 | vprc 4176 |
. . . . . . . 8
| |
| 5 | df-v 2774 |
. . . . . . . . . 10
| |
| 6 | equid 1724 |
. . . . . . . . . . . 12
| |
| 7 | pm5.1im 173 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . 11
|
| 9 | 8 | abbidv 2323 |
. . . . . . . . . 10
|
| 10 | 5, 9 | eqtr2id 2251 |
. . . . . . . . 9
|
| 11 | 10 | eleq1d 2274 |
. . . . . . . 8
|
| 12 | 4, 11 | mtbiri 677 |
. . . . . . 7
|
| 13 | 19.8a 1613 |
. . . . . . . . 9
| |
| 14 | 3, 13 | syl 14 |
. . . . . . . 8
|
| 15 | isset 2778 |
. . . . . . . 8
| |
| 16 | 14, 15 | sylibr 134 |
. . . . . . 7
|
| 17 | 12, 16 | nsyl3 627 |
. . . . . 6
|
| 18 | vex 2775 |
. . . . . . . . . 10
| |
| 19 | biidd 172 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | elab 2917 |
. . . . . . . . 9
|
| 21 | 20 | notbii 670 |
. . . . . . . 8
|
| 22 | 21 | biimpri 133 |
. . . . . . 7
|
| 23 | 22 | eq0rdv 3505 |
. . . . . 6
|
| 24 | 17, 23 | syl 14 |
. . . . 5
|
| 25 | 3, 24 | eqtrd 2238 |
. . . 4
|
| 26 | 0lt1o 6526 |
. . . 4
| |
| 27 | 25, 26 | eqeltrdi 2296 |
. . 3
|
| 28 | 27 | ssriv 3197 |
. 2
|
| 29 | 2, 28 | ssexi 4182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 df-1o 6502 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |