| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snexxph | Unicode version | ||
| Description: A case where the
antecedent of snexg 4217 is not needed.  The class
        | 
| Ref | Expression | 
|---|---|
| snexxph | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1on 6481 | 
. . 3
 | |
| 2 | 1 | elexi 2775 | 
. 2
 | 
| 3 | elsni 3640 | 
. . . . 5
 | |
| 4 | vprc 4165 | 
. . . . . . . 8
 | |
| 5 | df-v 2765 | 
. . . . . . . . . 10
 | |
| 6 | equid 1715 | 
. . . . . . . . . . . 12
 | |
| 7 | pm5.1im 173 | 
. . . . . . . . . . . 12
 | |
| 8 | 6, 7 | ax-mp 5 | 
. . . . . . . . . . 11
 | 
| 9 | 8 | abbidv 2314 | 
. . . . . . . . . 10
 | 
| 10 | 5, 9 | eqtr2id 2242 | 
. . . . . . . . 9
 | 
| 11 | 10 | eleq1d 2265 | 
. . . . . . . 8
 | 
| 12 | 4, 11 | mtbiri 676 | 
. . . . . . 7
 | 
| 13 | 19.8a 1604 | 
. . . . . . . . 9
 | |
| 14 | 3, 13 | syl 14 | 
. . . . . . . 8
 | 
| 15 | isset 2769 | 
. . . . . . . 8
 | |
| 16 | 14, 15 | sylibr 134 | 
. . . . . . 7
 | 
| 17 | 12, 16 | nsyl3 627 | 
. . . . . 6
 | 
| 18 | vex 2766 | 
. . . . . . . . . 10
 | |
| 19 | biidd 172 | 
. . . . . . . . . 10
 | |
| 20 | 18, 19 | elab 2908 | 
. . . . . . . . 9
 | 
| 21 | 20 | notbii 669 | 
. . . . . . . 8
 | 
| 22 | 21 | biimpri 133 | 
. . . . . . 7
 | 
| 23 | 22 | eq0rdv 3495 | 
. . . . . 6
 | 
| 24 | 17, 23 | syl 14 | 
. . . . 5
 | 
| 25 | 3, 24 | eqtrd 2229 | 
. . . 4
 | 
| 26 | 0lt1o 6498 | 
. . . 4
 | |
| 27 | 25, 26 | eqeltrdi 2287 | 
. . 3
 | 
| 28 | 27 | ssriv 3187 | 
. 2
 | 
| 29 | 2, 28 | ssexi 4171 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 df-1o 6474 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |