Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snexxph | Unicode version |
Description: A case where the antecedent of snexg 4171 is not needed. The class is from dcextest 4566. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
snexxph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6406 | . . 3 | |
2 | 1 | elexi 2743 | . 2 |
3 | elsni 3602 | . . . . 5 | |
4 | vprc 4122 | . . . . . . . 8 | |
5 | df-v 2733 | . . . . . . . . . 10 | |
6 | equid 1695 | . . . . . . . . . . . 12 | |
7 | pm5.1im 172 | . . . . . . . . . . . 12 | |
8 | 6, 7 | ax-mp 5 | . . . . . . . . . . 11 |
9 | 8 | abbidv 2289 | . . . . . . . . . 10 |
10 | 5, 9 | eqtr2id 2217 | . . . . . . . . 9 |
11 | 10 | eleq1d 2240 | . . . . . . . 8 |
12 | 4, 11 | mtbiri 671 | . . . . . . 7 |
13 | 19.8a 1584 | . . . . . . . . 9 | |
14 | 3, 13 | syl 14 | . . . . . . . 8 |
15 | isset 2737 | . . . . . . . 8 | |
16 | 14, 15 | sylibr 133 | . . . . . . 7 |
17 | 12, 16 | nsyl3 622 | . . . . . 6 |
18 | vex 2734 | . . . . . . . . . 10 | |
19 | biidd 171 | . . . . . . . . . 10 | |
20 | 18, 19 | elab 2875 | . . . . . . . . 9 |
21 | 20 | notbii 664 | . . . . . . . 8 |
22 | 21 | biimpri 132 | . . . . . . 7 |
23 | 22 | eq0rdv 3460 | . . . . . 6 |
24 | 17, 23 | syl 14 | . . . . 5 |
25 | 3, 24 | eqtrd 2204 | . . . 4 |
26 | 0lt1o 6423 | . . . 4 | |
27 | 25, 26 | eqeltrdi 2262 | . . 3 |
28 | 27 | ssriv 3152 | . 2 |
29 | 2, 28 | ssexi 4128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1349 wex 1486 wcel 2142 cab 2157 cvv 2731 c0 3415 csn 3584 con0 4349 c1o 6392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-nul 4116 ax-pow 4161 ax-pr 4195 ax-un 4419 |
This theorem depends on definitions: df-bi 116 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ral 2454 df-rex 2455 df-v 2733 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-pw 3569 df-sn 3590 df-pr 3591 df-uni 3798 df-tr 4089 df-iord 4352 df-on 4354 df-suc 4357 df-1o 6399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |