Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snexxph | Unicode version |
Description: A case where the antecedent of snexg 4162 is not needed. The class is from dcextest 4557. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.) |
Ref | Expression |
---|---|
snexxph |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 6387 | . . 3 | |
2 | 1 | elexi 2737 | . 2 |
3 | elsni 3593 | . . . . 5 | |
4 | vprc 4113 | . . . . . . . 8 | |
5 | df-v 2727 | . . . . . . . . . 10 | |
6 | equid 1689 | . . . . . . . . . . . 12 | |
7 | pm5.1im 172 | . . . . . . . . . . . 12 | |
8 | 6, 7 | ax-mp 5 | . . . . . . . . . . 11 |
9 | 8 | abbidv 2283 | . . . . . . . . . 10 |
10 | 5, 9 | eqtr2id 2211 | . . . . . . . . 9 |
11 | 10 | eleq1d 2234 | . . . . . . . 8 |
12 | 4, 11 | mtbiri 665 | . . . . . . 7 |
13 | 19.8a 1578 | . . . . . . . . 9 | |
14 | 3, 13 | syl 14 | . . . . . . . 8 |
15 | isset 2731 | . . . . . . . 8 | |
16 | 14, 15 | sylibr 133 | . . . . . . 7 |
17 | 12, 16 | nsyl3 616 | . . . . . 6 |
18 | vex 2728 | . . . . . . . . . 10 | |
19 | biidd 171 | . . . . . . . . . 10 | |
20 | 18, 19 | elab 2869 | . . . . . . . . 9 |
21 | 20 | notbii 658 | . . . . . . . 8 |
22 | 21 | biimpri 132 | . . . . . . 7 |
23 | 22 | eq0rdv 3452 | . . . . . 6 |
24 | 17, 23 | syl 14 | . . . . 5 |
25 | 3, 24 | eqtrd 2198 | . . . 4 |
26 | 0lt1o 6404 | . . . 4 | |
27 | 25, 26 | eqeltrdi 2256 | . . 3 |
28 | 27 | ssriv 3145 | . 2 |
29 | 2, 28 | ssexi 4119 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wceq 1343 wex 1480 wcel 2136 cab 2151 cvv 2725 c0 3408 csn 3575 con0 4340 c1o 6373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-uni 3789 df-tr 4080 df-iord 4343 df-on 4345 df-suc 4348 df-1o 6380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |