ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexxph Unicode version

Theorem snexxph 7052
Description: A case where the antecedent of snexg 4228 is not needed. The class  { x  | 
ph } is from dcextest 4629. (Contributed by Mario Carneiro and Jim Kingdon, 4-Jul-2022.)
Assertion
Ref Expression
snexxph  |-  { {
x  |  ph } }  e.  _V
Distinct variable group:    ph, x

Proof of Theorem snexxph
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1on 6509 . . 3  |-  1o  e.  On
21elexi 2784 . 2  |-  1o  e.  _V
3 elsni 3651 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  y  =  { x  | 
ph } )
4 vprc 4176 . . . . . . . 8  |-  -.  _V  e.  _V
5 df-v 2774 . . . . . . . . . 10  |-  _V  =  { x  |  x  =  x }
6 equid 1724 . . . . . . . . . . . 12  |-  x  =  x
7 pm5.1im 173 . . . . . . . . . . . 12  |-  ( x  =  x  ->  ( ph  ->  ( x  =  x  <->  ph ) ) )
86, 7ax-mp 5 . . . . . . . . . . 11  |-  ( ph  ->  ( x  =  x  <->  ph ) )
98abbidv 2323 . . . . . . . . . 10  |-  ( ph  ->  { x  |  x  =  x }  =  { x  |  ph }
)
105, 9eqtr2id 2251 . . . . . . . . 9  |-  ( ph  ->  { x  |  ph }  =  _V )
1110eleq1d 2274 . . . . . . . 8  |-  ( ph  ->  ( { x  | 
ph }  e.  _V  <->  _V  e.  _V ) )
124, 11mtbiri 677 . . . . . . 7  |-  ( ph  ->  -.  { x  | 
ph }  e.  _V )
13 19.8a 1613 . . . . . . . . 9  |-  ( y  =  { x  | 
ph }  ->  E. y 
y  =  { x  |  ph } )
143, 13syl 14 . . . . . . . 8  |-  ( y  e.  { { x  |  ph } }  ->  E. y  y  =  {
x  |  ph }
)
15 isset 2778 . . . . . . . 8  |-  ( { x  |  ph }  e.  _V  <->  E. y  y  =  { x  |  ph } )
1614, 15sylibr 134 . . . . . . 7  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  e.  _V )
1712, 16nsyl3 627 . . . . . 6  |-  ( y  e.  { { x  |  ph } }  ->  -. 
ph )
18 vex 2775 . . . . . . . . . 10  |-  y  e. 
_V
19 biidd 172 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
2018, 19elab 2917 . . . . . . . . 9  |-  ( y  e.  { x  | 
ph }  <->  ph )
2120notbii 670 . . . . . . . 8  |-  ( -.  y  e.  { x  |  ph }  <->  -.  ph )
2221biimpri 133 . . . . . . 7  |-  ( -. 
ph  ->  -.  y  e.  { x  |  ph }
)
2322eq0rdv 3505 . . . . . 6  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
2417, 23syl 14 . . . . 5  |-  ( y  e.  { { x  |  ph } }  ->  { x  |  ph }  =  (/) )
253, 24eqtrd 2238 . . . 4  |-  ( y  e.  { { x  |  ph } }  ->  y  =  (/) )
26 0lt1o 6526 . . . 4  |-  (/)  e.  1o
2725, 26eqeltrdi 2296 . . 3  |-  ( y  e.  { { x  |  ph } }  ->  y  e.  1o )
2827ssriv 3197 . 2  |-  { {
x  |  ph } }  C_  1o
292, 28ssexi 4182 1  |-  { {
x  |  ph } }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   {cab 2191   _Vcvv 2772   (/)c0 3460   {csn 3633   Oncon0 4410   1oc1o 6495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418  df-1o 6502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator