| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexxph | Unicode version | ||
| Description: A case where the
antecedent of snexg 4268 is not needed. The class
|
| Ref | Expression |
|---|---|
| snexxph |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1on 6569 |
. . 3
| |
| 2 | 1 | elexi 2812 |
. 2
|
| 3 | elsni 3684 |
. . . . 5
| |
| 4 | vprc 4216 |
. . . . . . . 8
| |
| 5 | df-v 2801 |
. . . . . . . . . 10
| |
| 6 | equid 1747 |
. . . . . . . . . . . 12
| |
| 7 | pm5.1im 173 |
. . . . . . . . . . . 12
| |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . 11
|
| 9 | 8 | abbidv 2347 |
. . . . . . . . . 10
|
| 10 | 5, 9 | eqtr2id 2275 |
. . . . . . . . 9
|
| 11 | 10 | eleq1d 2298 |
. . . . . . . 8
|
| 12 | 4, 11 | mtbiri 679 |
. . . . . . 7
|
| 13 | 19.8a 1636 |
. . . . . . . . 9
| |
| 14 | 3, 13 | syl 14 |
. . . . . . . 8
|
| 15 | isset 2806 |
. . . . . . . 8
| |
| 16 | 14, 15 | sylibr 134 |
. . . . . . 7
|
| 17 | 12, 16 | nsyl3 629 |
. . . . . 6
|
| 18 | vex 2802 |
. . . . . . . . . 10
| |
| 19 | biidd 172 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | elab 2947 |
. . . . . . . . 9
|
| 21 | 20 | notbii 672 |
. . . . . . . 8
|
| 22 | 21 | biimpri 133 |
. . . . . . 7
|
| 23 | 22 | eq0rdv 3536 |
. . . . . 6
|
| 24 | 17, 23 | syl 14 |
. . . . 5
|
| 25 | 3, 24 | eqtrd 2262 |
. . . 4
|
| 26 | 0lt1o 6586 |
. . . 4
| |
| 27 | 25, 26 | eqeltrdi 2320 |
. . 3
|
| 28 | 27 | ssriv 3228 |
. 2
|
| 29 | 2, 28 | ssexi 4222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-1o 6562 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |