ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iprc Unicode version

Theorem iprc 4897
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc  |-  -.  _I  e.  _V

Proof of Theorem iprc
StepHypRef Expression
1 vprc 4137 . . 3  |-  -.  _V  e.  _V
2 dmi 4844 . . . 4  |-  dom  _I  =  _V
32eleq1i 2243 . . 3  |-  ( dom 
_I  e.  _V  <->  _V  e.  _V )
41, 3mtbir 671 . 2  |-  -.  dom  _I  e.  _V
5 dmexg 4893 . 2  |-  (  _I  e.  _V  ->  dom  _I  e.  _V )
64, 5mto 662 1  |-  -.  _I  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2148   _Vcvv 2739    _I cid 4290   dom cdm 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-dm 4638  df-rn 4639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator