![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iprc | Unicode version |
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.) |
Ref | Expression |
---|---|
iprc |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vprc 4137 |
. . 3
![]() ![]() ![]() ![]() ![]() | |
2 | dmi 4844 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eleq1i 2243 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtbir 671 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | dmexg 4893 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | mto 662 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-dm 4638 df-rn 4639 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |