ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iprc Unicode version

Theorem iprc 4907
Description: The identity function is a proper class. This means, for example, that we cannot use it as a member of the class of continuous functions unless it is restricted to a set. (Contributed by NM, 1-Jan-2007.)
Assertion
Ref Expression
iprc  |-  -.  _I  e.  _V

Proof of Theorem iprc
StepHypRef Expression
1 vprc 4147 . . 3  |-  -.  _V  e.  _V
2 dmi 4854 . . . 4  |-  dom  _I  =  _V
32eleq1i 2253 . . 3  |-  ( dom 
_I  e.  _V  <->  _V  e.  _V )
41, 3mtbir 672 . 2  |-  -.  dom  _I  e.  _V
5 dmexg 4903 . 2  |-  (  _I  e.  _V  ->  dom  _I  e.  _V )
64, 5mto 663 1  |-  -.  _I  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2158   _Vcvv 2749    _I cid 4300   dom cdm 4638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-dm 4648  df-rn 4649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator