ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcextest Unicode version

Theorem dcextest 4565
Description: If it is decidable whether  { x  | 
ph } is a set, then  -.  ph is decidable (where  x does not occur in 
ph). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition  -.  ph is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.)
Hypothesis
Ref Expression
dcextest.ex  |- DECID  { x  |  ph }  e.  _V
Assertion
Ref Expression
dcextest  |- DECID  -.  ph
Distinct variable group:    ph, x

Proof of Theorem dcextest
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dcextest.ex . . . 4  |- DECID  { x  |  ph }  e.  _V
2 exmiddc 831 . . . 4  |-  (DECID  { x  |  ph }  e.  _V  ->  ( { x  | 
ph }  e.  _V  \/  -.  { x  | 
ph }  e.  _V ) )
31, 2ax-mp 5 . . 3  |-  ( { x  |  ph }  e.  _V  \/  -.  {
x  |  ph }  e.  _V )
4 vprc 4121 . . . . . . 7  |-  -.  _V  e.  _V
5 df-v 2732 . . . . . . . . 9  |-  _V  =  { x  |  x  =  x }
6 equid 1694 . . . . . . . . . . 11  |-  x  =  x
7 pm5.1im 172 . . . . . . . . . . 11  |-  ( x  =  x  ->  ( ph  ->  ( x  =  x  <->  ph ) ) )
86, 7ax-mp 5 . . . . . . . . . 10  |-  ( ph  ->  ( x  =  x  <->  ph ) )
98abbidv 2288 . . . . . . . . 9  |-  ( ph  ->  { x  |  x  =  x }  =  { x  |  ph }
)
105, 9eqtr2id 2216 . . . . . . . 8  |-  ( ph  ->  { x  |  ph }  =  _V )
1110eleq1d 2239 . . . . . . 7  |-  ( ph  ->  ( { x  | 
ph }  e.  _V  <->  _V  e.  _V ) )
124, 11mtbiri 670 . . . . . 6  |-  ( ph  ->  -.  { x  | 
ph }  e.  _V )
1312con2i 622 . . . . 5  |-  ( { x  |  ph }  e.  _V  ->  -.  ph )
14 vex 2733 . . . . . . . . . 10  |-  y  e. 
_V
15 biidd 171 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
1614, 15elab 2874 . . . . . . . . 9  |-  ( y  e.  { x  | 
ph }  <->  ph )
1716notbii 663 . . . . . . . 8  |-  ( -.  y  e.  { x  |  ph }  <->  -.  ph )
1817biimpri 132 . . . . . . 7  |-  ( -. 
ph  ->  -.  y  e.  { x  |  ph }
)
1918eq0rdv 3459 . . . . . 6  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
20 0ex 4116 . . . . . 6  |-  (/)  e.  _V
2119, 20eqeltrdi 2261 . . . . 5  |-  ( -. 
ph  ->  { x  | 
ph }  e.  _V )
2213, 21impbii 125 . . . 4  |-  ( { x  |  ph }  e.  _V  <->  -.  ph )
2322notbii 663 . . . 4  |-  ( -. 
{ x  |  ph }  e.  _V  <->  -.  -.  ph )
2422, 23orbi12i 759 . . 3  |-  ( ( { x  |  ph }  e.  _V  \/  -.  { x  |  ph }  e.  _V )  <->  ( -.  ph  \/  -.  -.  ph ) )
253, 24mpbi 144 . 2  |-  ( -. 
ph  \/  -.  -.  ph )
26 df-dc 830 . 2  |-  (DECID  -.  ph  <->  ( -.  ph  \/  -.  -.  ph ) )
2725, 26mpbir 145 1  |- DECID  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 703  DECID wdc 829    e. wcel 2141   {cab 2156   _Vcvv 2730   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator