Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcextest | Unicode version |
Description: If it is decidable whether is a set, then is decidable (where does not occur in ). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.) |
Ref | Expression |
---|---|
dcextest.ex | DECID |
Ref | Expression |
---|---|
dcextest | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcextest.ex | . . . 4 DECID | |
2 | exmiddc 826 | . . . 4 DECID | |
3 | 1, 2 | ax-mp 5 | . . 3 |
4 | vprc 4113 | . . . . . . 7 | |
5 | df-v 2727 | . . . . . . . . 9 | |
6 | equid 1689 | . . . . . . . . . . 11 | |
7 | pm5.1im 172 | . . . . . . . . . . 11 | |
8 | 6, 7 | ax-mp 5 | . . . . . . . . . 10 |
9 | 8 | abbidv 2283 | . . . . . . . . 9 |
10 | 5, 9 | eqtr2id 2211 | . . . . . . . 8 |
11 | 10 | eleq1d 2234 | . . . . . . 7 |
12 | 4, 11 | mtbiri 665 | . . . . . 6 |
13 | 12 | con2i 617 | . . . . 5 |
14 | vex 2728 | . . . . . . . . . 10 | |
15 | biidd 171 | . . . . . . . . . 10 | |
16 | 14, 15 | elab 2869 | . . . . . . . . 9 |
17 | 16 | notbii 658 | . . . . . . . 8 |
18 | 17 | biimpri 132 | . . . . . . 7 |
19 | 18 | eq0rdv 3452 | . . . . . 6 |
20 | 0ex 4108 | . . . . . 6 | |
21 | 19, 20 | eqeltrdi 2256 | . . . . 5 |
22 | 13, 21 | impbii 125 | . . . 4 |
23 | 22 | notbii 658 | . . . 4 |
24 | 22, 23 | orbi12i 754 | . . 3 |
25 | 3, 24 | mpbi 144 | . 2 |
26 | df-dc 825 | . 2 DECID | |
27 | 25, 26 | mpbir 145 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 wo 698 DECID wdc 824 wcel 2136 cab 2151 cvv 2725 c0 3408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-nul 4107 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-dif 3117 df-in 3121 df-ss 3128 df-nul 3409 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |