| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dcextest | Unicode version | ||
| Description: If it is decidable
whether  | 
| Ref | Expression | 
|---|---|
| dcextest.ex | 
 | 
| Ref | Expression | 
|---|---|
| dcextest | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dcextest.ex | 
. . . 4
 | |
| 2 | exmiddc 837 | 
. . . 4
 | |
| 3 | 1, 2 | ax-mp 5 | 
. . 3
 | 
| 4 | vprc 4165 | 
. . . . . . 7
 | |
| 5 | df-v 2765 | 
. . . . . . . . 9
 | |
| 6 | equid 1715 | 
. . . . . . . . . . 11
 | |
| 7 | pm5.1im 173 | 
. . . . . . . . . . 11
 | |
| 8 | 6, 7 | ax-mp 5 | 
. . . . . . . . . 10
 | 
| 9 | 8 | abbidv 2314 | 
. . . . . . . . 9
 | 
| 10 | 5, 9 | eqtr2id 2242 | 
. . . . . . . 8
 | 
| 11 | 10 | eleq1d 2265 | 
. . . . . . 7
 | 
| 12 | 4, 11 | mtbiri 676 | 
. . . . . 6
 | 
| 13 | 12 | con2i 628 | 
. . . . 5
 | 
| 14 | vex 2766 | 
. . . . . . . . . 10
 | |
| 15 | biidd 172 | 
. . . . . . . . . 10
 | |
| 16 | 14, 15 | elab 2908 | 
. . . . . . . . 9
 | 
| 17 | 16 | notbii 669 | 
. . . . . . . 8
 | 
| 18 | 17 | biimpri 133 | 
. . . . . . 7
 | 
| 19 | 18 | eq0rdv 3495 | 
. . . . . 6
 | 
| 20 | 0ex 4160 | 
. . . . . 6
 | |
| 21 | 19, 20 | eqeltrdi 2287 | 
. . . . 5
 | 
| 22 | 13, 21 | impbii 126 | 
. . . 4
 | 
| 23 | 22 | notbii 669 | 
. . . 4
 | 
| 24 | 22, 23 | orbi12i 765 | 
. . 3
 | 
| 25 | 3, 24 | mpbi 145 | 
. 2
 | 
| 26 | df-dc 836 | 
. 2
 | |
| 27 | 25, 26 | mpbir 146 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |