ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcextest Unicode version

Theorem dcextest 4592
Description: If it is decidable whether  { x  | 
ph } is a set, then  -.  ph is decidable (where  x does not occur in 
ph). From this fact, we can deduce (outside the formal system, since we cannot quantify over classes) that if it is decidable whether any class is a set, then "weak excluded middle" (that is, any negated proposition  -.  ph is decidable) holds. (Contributed by Jim Kingdon, 3-Jul-2022.)
Hypothesis
Ref Expression
dcextest.ex  |- DECID  { x  |  ph }  e.  _V
Assertion
Ref Expression
dcextest  |- DECID  -.  ph
Distinct variable group:    ph, x

Proof of Theorem dcextest
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dcextest.ex . . . 4  |- DECID  { x  |  ph }  e.  _V
2 exmiddc 837 . . . 4  |-  (DECID  { x  |  ph }  e.  _V  ->  ( { x  | 
ph }  e.  _V  \/  -.  { x  | 
ph }  e.  _V ) )
31, 2ax-mp 5 . . 3  |-  ( { x  |  ph }  e.  _V  \/  -.  {
x  |  ph }  e.  _V )
4 vprc 4147 . . . . . . 7  |-  -.  _V  e.  _V
5 df-v 2751 . . . . . . . . 9  |-  _V  =  { x  |  x  =  x }
6 equid 1711 . . . . . . . . . . 11  |-  x  =  x
7 pm5.1im 173 . . . . . . . . . . 11  |-  ( x  =  x  ->  ( ph  ->  ( x  =  x  <->  ph ) ) )
86, 7ax-mp 5 . . . . . . . . . 10  |-  ( ph  ->  ( x  =  x  <->  ph ) )
98abbidv 2305 . . . . . . . . 9  |-  ( ph  ->  { x  |  x  =  x }  =  { x  |  ph }
)
105, 9eqtr2id 2233 . . . . . . . 8  |-  ( ph  ->  { x  |  ph }  =  _V )
1110eleq1d 2256 . . . . . . 7  |-  ( ph  ->  ( { x  | 
ph }  e.  _V  <->  _V  e.  _V ) )
124, 11mtbiri 676 . . . . . 6  |-  ( ph  ->  -.  { x  | 
ph }  e.  _V )
1312con2i 628 . . . . 5  |-  ( { x  |  ph }  e.  _V  ->  -.  ph )
14 vex 2752 . . . . . . . . . 10  |-  y  e. 
_V
15 biidd 172 . . . . . . . . . 10  |-  ( x  =  y  ->  ( ph 
<-> 
ph ) )
1614, 15elab 2893 . . . . . . . . 9  |-  ( y  e.  { x  | 
ph }  <->  ph )
1716notbii 669 . . . . . . . 8  |-  ( -.  y  e.  { x  |  ph }  <->  -.  ph )
1817biimpri 133 . . . . . . 7  |-  ( -. 
ph  ->  -.  y  e.  { x  |  ph }
)
1918eq0rdv 3479 . . . . . 6  |-  ( -. 
ph  ->  { x  | 
ph }  =  (/) )
20 0ex 4142 . . . . . 6  |-  (/)  e.  _V
2119, 20eqeltrdi 2278 . . . . 5  |-  ( -. 
ph  ->  { x  | 
ph }  e.  _V )
2213, 21impbii 126 . . . 4  |-  ( { x  |  ph }  e.  _V  <->  -.  ph )
2322notbii 669 . . . 4  |-  ( -. 
{ x  |  ph }  e.  _V  <->  -.  -.  ph )
2422, 23orbi12i 765 . . 3  |-  ( ( { x  |  ph }  e.  _V  \/  -.  { x  |  ph }  e.  _V )  <->  ( -.  ph  \/  -.  -.  ph ) )
253, 24mpbi 145 . 2  |-  ( -. 
ph  \/  -.  -.  ph )
26 df-dc 836 . 2  |-  (DECID  -.  ph  <->  ( -.  ph  \/  -.  -.  ph ) )
2725, 26mpbir 146 1  |- DECID  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709  DECID wdc 835    e. wcel 2158   {cab 2173   _Vcvv 2749   (/)c0 3434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-nul 4141
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-dif 3143  df-in 3147  df-ss 3154  df-nul 3435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator