| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmstps | GIF version | ||
| Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmstps | ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2229 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
| 2 | eqid 2229 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 3 | eqid 2229 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
| 4 | 1, 2, 3 | isxms 15133 | . 2 ⊢ (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))))) |
| 5 | 4 | simplbi 274 | 1 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 × cxp 4717 ↾ cres 4721 ‘cfv 5318 Basecbs 13040 distcds 13127 TopOpenctopn 13281 MetOpencmopn 14513 TopSpctps 14712 ∞MetSpcxms 15018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-res 4731 df-iota 5278 df-fv 5326 df-xms 15021 |
| This theorem is referenced by: mstps 15141 |
| Copyright terms: Public domain | W3C validator |