ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmstps GIF version

Theorem xmstps 12640
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
xmstps (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)

Proof of Theorem xmstps
StepHypRef Expression
1 eqid 2139 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2139 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2139 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isxms 12634 . 2 (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))))))
54simplbi 272 1 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480   × cxp 4537  cres 4541  cfv 5123  Basecbs 11973  distcds 12044  TopOpenctopn 12135  MetOpencmopn 12168  TopSpctps 12211  ∞MetSpcxms 12519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-rab 2425  df-v 2688  df-un 3075  df-in 3077  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-res 4551  df-iota 5088  df-fv 5131  df-xms 12522
This theorem is referenced by:  mstps  12642
  Copyright terms: Public domain W3C validator