Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmstps | GIF version |
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
xmstps | ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2164 | . . 3 ⊢ (TopOpen‘𝑀) = (TopOpen‘𝑀) | |
2 | eqid 2164 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2164 | . . 3 ⊢ ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) | |
4 | 1, 2, 3 | isxms 13049 | . 2 ⊢ (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))))) |
5 | 4 | simplbi 272 | 1 ⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1342 ∈ wcel 2135 × cxp 4599 ↾ cres 4603 ‘cfv 5185 Basecbs 12388 distcds 12459 TopOpenctopn 12550 MetOpencmopn 12583 TopSpctps 12626 ∞MetSpcxms 12934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-rab 2451 df-v 2726 df-un 3118 df-in 3120 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-opab 4041 df-xp 4607 df-res 4613 df-iota 5150 df-fv 5193 df-xms 12937 |
This theorem is referenced by: mstps 13057 |
Copyright terms: Public domain | W3C validator |