ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmstps GIF version

Theorem xmstps 15096
Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
xmstps (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)

Proof of Theorem xmstps
StepHypRef Expression
1 eqid 2209 . . 3 (TopOpen‘𝑀) = (TopOpen‘𝑀)
2 eqid 2209 . . 3 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2209 . . 3 ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))) = ((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀)))
41, 2, 3isxms 15090 . 2 (𝑀 ∈ ∞MetSp ↔ (𝑀 ∈ TopSp ∧ (TopOpen‘𝑀) = (MetOpen‘((dist‘𝑀) ↾ ((Base‘𝑀) × (Base‘𝑀))))))
54simplbi 274 1 (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180   × cxp 4694  cres 4698  cfv 5294  Basecbs 12998  distcds 13085  TopOpenctopn 13239  MetOpencmopn 14470  TopSpctps 14669  ∞MetSpcxms 14975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-rab 2497  df-v 2781  df-un 3181  df-in 3183  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-res 4708  df-iota 5254  df-fv 5302  df-xms 14978
This theorem is referenced by:  mstps  15098
  Copyright terms: Public domain W3C validator