ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp11m Unicode version

Theorem xp11m 5049
Description: The cross product of inhabited classes is one-to-one. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xp11m  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Distinct variable groups:    x, A    y, B
Allowed substitution hints:    A( y)    B( x)    C( x, y)    D( x, y)

Proof of Theorem xp11m
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 xpm 5032 . . 3  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
2 anidm 394 . . . . . 6  |-  ( ( E. z  z  e.  ( A  X.  B
)  /\  E. z 
z  e.  ( A  X.  B ) )  <->  E. z  z  e.  ( A  X.  B
) )
3 eleq2 2234 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
z  e.  ( A  X.  B )  <->  z  e.  ( C  X.  D
) ) )
43exbidv 1818 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  <->  E. z  z  e.  ( C  X.  D
) ) )
54anbi2d 461 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( A  X.  B ) )  <-> 
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) ) ) )
62, 5bitr3id 193 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  <->  ( E. z 
z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) ) ) )
7 eqimss 3201 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( A  X.  B )  C_  ( C  X.  D
) )
8 ssxpbm 5046 . . . . . . . 8  |-  ( E. z  z  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
97, 8syl5ibcom 154 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  ->  ( A  C_  C  /\  B  C_  D ) ) )
10 eqimss2 3202 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( C  X.  D )  C_  ( A  X.  B
) )
11 ssxpbm 5046 . . . . . . . 8  |-  ( E. z  z  e.  ( C  X.  D )  ->  ( ( C  X.  D )  C_  ( A  X.  B
)  <->  ( C  C_  A  /\  D  C_  B
) ) )
1210, 11syl5ibcom 154 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( C  X.  D
)  ->  ( C  C_  A  /\  D  C_  B ) ) )
139, 12anim12d 333 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) )  ->  ( ( A 
C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B ) ) ) )
14 an4 581 . . . . . . 7  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B ) ) )
15 eqss 3162 . . . . . . . 8  |-  ( A  =  C  <->  ( A  C_  C  /\  C  C_  A ) )
16 eqss 3162 . . . . . . . 8  |-  ( B  =  D  <->  ( B  C_  D  /\  D  C_  B ) )
1715, 16anbi12i 457 . . . . . . 7  |-  ( ( A  =  C  /\  B  =  D )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B
) ) )
1814, 17bitr4i 186 . . . . . 6  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( A  =  C  /\  B  =  D ) )
1913, 18syl6ib 160 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) )  ->  ( A  =  C  /\  B  =  D ) ) )
206, 19sylbid 149 . . . 4  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  ->  ( A  =  C  /\  B  =  D ) ) )
2120com12 30 . . 3  |-  ( E. z  z  e.  ( A  X.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
221, 21sylbi 120 . 2  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
23 xpeq12 4630 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  X.  B
)  =  ( C  X.  D ) )
2422, 23impbid1 141 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by:  cc2lem  7228
  Copyright terms: Public domain W3C validator