ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp11m Unicode version

Theorem xp11m 5167
Description: The cross product of inhabited classes is one-to-one. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xp11m  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Distinct variable groups:    x, A    y, B
Allowed substitution hints:    A( y)    B( x)    C( x, y)    D( x, y)

Proof of Theorem xp11m
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 xpm 5150 . . 3  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
2 anidm 396 . . . . . 6  |-  ( ( E. z  z  e.  ( A  X.  B
)  /\  E. z 
z  e.  ( A  X.  B ) )  <->  E. z  z  e.  ( A  X.  B
) )
3 eleq2 2293 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
z  e.  ( A  X.  B )  <->  z  e.  ( C  X.  D
) ) )
43exbidv 1871 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  <->  E. z  z  e.  ( C  X.  D
) ) )
54anbi2d 464 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( A  X.  B ) )  <-> 
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) ) ) )
62, 5bitr3id 194 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  <->  ( E. z 
z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) ) ) )
7 eqimss 3278 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( A  X.  B )  C_  ( C  X.  D
) )
8 ssxpbm 5164 . . . . . . . 8  |-  ( E. z  z  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
97, 8syl5ibcom 155 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  ->  ( A  C_  C  /\  B  C_  D ) ) )
10 eqimss2 3279 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( C  X.  D )  C_  ( A  X.  B
) )
11 ssxpbm 5164 . . . . . . . 8  |-  ( E. z  z  e.  ( C  X.  D )  ->  ( ( C  X.  D )  C_  ( A  X.  B
)  <->  ( C  C_  A  /\  D  C_  B
) ) )
1210, 11syl5ibcom 155 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( C  X.  D
)  ->  ( C  C_  A  /\  D  C_  B ) ) )
139, 12anim12d 335 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) )  ->  ( ( A 
C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B ) ) ) )
14 an4 586 . . . . . . 7  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B ) ) )
15 eqss 3239 . . . . . . . 8  |-  ( A  =  C  <->  ( A  C_  C  /\  C  C_  A ) )
16 eqss 3239 . . . . . . . 8  |-  ( B  =  D  <->  ( B  C_  D  /\  D  C_  B ) )
1715, 16anbi12i 460 . . . . . . 7  |-  ( ( A  =  C  /\  B  =  D )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B
) ) )
1814, 17bitr4i 187 . . . . . 6  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( A  =  C  /\  B  =  D ) )
1913, 18imbitrdi 161 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) )  ->  ( A  =  C  /\  B  =  D ) ) )
206, 19sylbid 150 . . . 4  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  ->  ( A  =  C  /\  B  =  D ) ) )
2120com12 30 . . 3  |-  ( E. z  z  e.  ( A  X.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
221, 21sylbi 121 . 2  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
23 xpeq12 4738 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  X.  B
)  =  ( C  X.  D ) )
2422, 23impbid1 142 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200    C_ wss 3197    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  cc2lem  7452  lmodfopnelem1  14288
  Copyright terms: Public domain W3C validator