| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ismet | Unicode version | ||
| Description: Express the predicate
" |
| Ref | Expression |
|---|---|
| ismet |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. . . . 5
| |
| 2 | fnmap 6800 |
. . . . . . . 8
| |
| 3 | reex 8129 |
. . . . . . . 8
| |
| 4 | sqxpexg 4834 |
. . . . . . . 8
| |
| 5 | fnovex 6033 |
. . . . . . . 8
| |
| 6 | 2, 3, 4, 5 | mp3an12i 1375 |
. . . . . . 7
|
| 7 | rabexg 4226 |
. . . . . . 7
| |
| 8 | 6, 7 | syl 14 |
. . . . . 6
|
| 9 | xpeq12 4737 |
. . . . . . . . . 10
| |
| 10 | 9 | anidms 397 |
. . . . . . . . 9
|
| 11 | 10 | oveq2d 6016 |
. . . . . . . 8
|
| 12 | raleq 2728 |
. . . . . . . . . . 11
| |
| 13 | 12 | anbi2d 464 |
. . . . . . . . . 10
|
| 14 | 13 | raleqbi1dv 2740 |
. . . . . . . . 9
|
| 15 | 14 | raleqbi1dv 2740 |
. . . . . . . 8
|
| 16 | 11, 15 | rabeqbidv 2794 |
. . . . . . 7
|
| 17 | df-met 14503 |
. . . . . . 7
| |
| 18 | 16, 17 | fvmptg 5709 |
. . . . . 6
|
| 19 | 8, 18 | mpdan 421 |
. . . . 5
|
| 20 | 1, 19 | syl 14 |
. . . 4
|
| 21 | 20 | eleq2d 2299 |
. . 3
|
| 22 | oveq 6006 |
. . . . . . . 8
| |
| 23 | 22 | eqeq1d 2238 |
. . . . . . 7
|
| 24 | 23 | bibi1d 233 |
. . . . . 6
|
| 25 | oveq 6006 |
. . . . . . . . 9
| |
| 26 | oveq 6006 |
. . . . . . . . 9
| |
| 27 | 25, 26 | oveq12d 6018 |
. . . . . . . 8
|
| 28 | 22, 27 | breq12d 4095 |
. . . . . . 7
|
| 29 | 28 | ralbidv 2530 |
. . . . . 6
|
| 30 | 24, 29 | anbi12d 473 |
. . . . 5
|
| 31 | 30 | 2ralbidv 2554 |
. . . 4
|
| 32 | 31 | elrab 2959 |
. . 3
|
| 33 | 21, 32 | bitrdi 196 |
. 2
|
| 34 | sqxpexg 4834 |
. . . 4
| |
| 35 | elmapg 6806 |
. . . 4
| |
| 36 | 3, 34, 35 | sylancr 414 |
. . 3
|
| 37 | 36 | anbi1d 465 |
. 2
|
| 38 | 33, 37 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-map 6795 df-met 14503 |
| This theorem is referenced by: ismeti 15014 metflem 15017 ismet2 15022 |
| Copyright terms: Public domain | W3C validator |