ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismet Unicode version

Theorem ismet 13847
Description: Express the predicate " D is a metric". (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
ismet  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
Distinct variable groups:    x, y, z, D    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem ismet
Dummy variables  d  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2749 . . . . 5  |-  ( X  e.  A  ->  X  e.  _V )
2 fnmap 6655 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
3 reex 7945 . . . . . . . 8  |-  RR  e.  _V
4 sqxpexg 4743 . . . . . . . 8  |-  ( X  e.  _V  ->  ( X  X.  X )  e. 
_V )
5 fnovex 5908 . . . . . . . 8  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  RR  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( RR  ^m  ( X  X.  X ) )  e. 
_V )
62, 3, 4, 5mp3an12i 1341 . . . . . . 7  |-  ( X  e.  _V  ->  ( RR  ^m  ( X  X.  X ) )  e. 
_V )
7 rabexg 4147 . . . . . . 7  |-  ( ( RR  ^m  ( X  X.  X ) )  e.  _V  ->  { d  e.  ( RR  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x )  +  ( z d y ) ) ) }  e.  _V )
86, 7syl 14 . . . . . 6  |-  ( X  e.  _V  ->  { d  e.  ( RR  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x )  +  ( z d y ) ) ) }  e.  _V )
9 xpeq12 4646 . . . . . . . . . 10  |-  ( ( t  =  X  /\  t  =  X )  ->  ( t  X.  t
)  =  ( X  X.  X ) )
109anidms 397 . . . . . . . . 9  |-  ( t  =  X  ->  (
t  X.  t )  =  ( X  X.  X ) )
1110oveq2d 5891 . . . . . . . 8  |-  ( t  =  X  ->  ( RR  ^m  ( t  X.  t ) )  =  ( RR  ^m  ( X  X.  X ) ) )
12 raleq 2673 . . . . . . . . . . 11  |-  ( t  =  X  ->  ( A. z  e.  t 
( x d y )  <_  ( (
z d x )  +  ( z d y ) )  <->  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) )
1312anbi2d 464 . . . . . . . . . 10  |-  ( t  =  X  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) ) )
1413raleqbi1dv 2681 . . . . . . . . 9  |-  ( t  =  X  ->  ( A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) ) )
1514raleqbi1dv 2681 . . . . . . . 8  |-  ( t  =  X  ->  ( A. x  e.  t  A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) ) )
1611, 15rabeqbidv 2733 . . . . . . 7  |-  ( t  =  X  ->  { d  e.  ( RR  ^m  ( t  X.  t
) )  |  A. x  e.  t  A. y  e.  t  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  t  ( x d y )  <_  (
( z d x )  +  ( z d y ) ) ) }  =  {
d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } )
17 df-met 13452 . . . . . . 7  |-  Met  =  ( t  e.  _V  |->  { d  e.  ( RR  ^m  ( t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
1816, 17fvmptg 5593 . . . . . 6  |-  ( ( X  e.  _V  /\  { d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) }  e.  _V )  ->  ( Met `  X )  =  {
d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } )
198, 18mpdan 421 . . . . 5  |-  ( X  e.  _V  ->  ( Met `  X )  =  { d  e.  ( RR  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
201, 19syl 14 . . . 4  |-  ( X  e.  A  ->  ( Met `  X )  =  { d  e.  ( RR  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
2120eleq2d 2247 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  D  e.  { d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } ) )
22 oveq 5881 . . . . . . . 8  |-  ( d  =  D  ->  (
x d y )  =  ( x D y ) )
2322eqeq1d 2186 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  =  0  <->  (
x D y )  =  0 ) )
2423bibi1d 233 . . . . . 6  |-  ( d  =  D  ->  (
( ( x d y )  =  0  <-> 
x  =  y )  <-> 
( ( x D y )  =  0  <-> 
x  =  y ) ) )
25 oveq 5881 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d x )  =  ( z D x ) )
26 oveq 5881 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d y )  =  ( z D y ) )
2725, 26oveq12d 5893 . . . . . . . 8  |-  ( d  =  D  ->  (
( z d x )  +  ( z d y ) )  =  ( ( z D x )  +  ( z D y ) ) )
2822, 27breq12d 4017 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  <_  ( (
z d x )  +  ( z d y ) )  <->  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) )
2928ralbidv 2477 . . . . . 6  |-  ( d  =  D  ->  ( A. z  e.  X  ( x d y )  <_  ( (
z d x )  +  ( z d y ) )  <->  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) )
3024, 29anbi12d 473 . . . . 5  |-  ( d  =  D  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) )
31302ralbidv 2501 . . . 4  |-  ( d  =  D  ->  ( A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) )
3231elrab 2894 . . 3  |-  ( D  e.  { d  e.  ( RR  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) }  <-> 
( D  e.  ( RR  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) )
3321, 32bitrdi 196 . 2  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D  e.  ( RR  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) ) )
34 sqxpexg 4743 . . . 4  |-  ( X  e.  A  ->  ( X  X.  X )  e. 
_V )
35 elmapg 6661 . . . 4  |-  ( ( RR  e.  _V  /\  ( X  X.  X
)  e.  _V )  ->  ( D  e.  ( RR  ^m  ( X  X.  X ) )  <-> 
D : ( X  X.  X ) --> RR ) )
363, 34, 35sylancr 414 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( RR  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR ) )
3736anbi1d 465 . 2  |-  ( X  e.  A  ->  (
( D  e.  ( RR  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) ) )
3833, 37bitrd 188 1  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459   _Vcvv 2738   class class class wbr 4004    X. cxp 4625    Fn wfn 5212   -->wf 5213   ` cfv 5217  (class class class)co 5875    ^m cmap 6648   RRcr 7810   0cc0 7811    + caddc 7814    <_ cle 7993   Metcmet 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-map 6650  df-met 13452
This theorem is referenced by:  ismeti  13849  metflem  13852  ismet2  13857
  Copyright terms: Public domain W3C validator