ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismet Unicode version

Theorem ismet 12272
Description: Express the predicate " D is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
ismet  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
Distinct variable groups:    x, y, z, D    x, X, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem ismet
Dummy variables  d  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2652 . . . . 5  |-  ( X  e.  A  ->  X  e.  _V )
2 fnmap 6479 . . . . . . . 8  |-  ^m  Fn  ( _V  X.  _V )
3 reex 7626 . . . . . . . 8  |-  RR  e.  _V
4 sqxpexg 4593 . . . . . . . 8  |-  ( X  e.  _V  ->  ( X  X.  X )  e. 
_V )
5 fnovex 5736 . . . . . . . 8  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  RR  e.  _V  /\  ( X  X.  X )  e. 
_V )  ->  ( RR  ^m  ( X  X.  X ) )  e. 
_V )
62, 3, 4, 5mp3an12i 1287 . . . . . . 7  |-  ( X  e.  _V  ->  ( RR  ^m  ( X  X.  X ) )  e. 
_V )
7 rabexg 4011 . . . . . . 7  |-  ( ( RR  ^m  ( X  X.  X ) )  e.  _V  ->  { d  e.  ( RR  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x )  +  ( z d y ) ) ) }  e.  _V )
86, 7syl 14 . . . . . 6  |-  ( X  e.  _V  ->  { d  e.  ( RR  ^m  ( X  X.  X
) )  |  A. x  e.  X  A. y  e.  X  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x d y )  <_  (
( z d x )  +  ( z d y ) ) ) }  e.  _V )
9 xpeq12 4496 . . . . . . . . . 10  |-  ( ( t  =  X  /\  t  =  X )  ->  ( t  X.  t
)  =  ( X  X.  X ) )
109anidms 392 . . . . . . . . 9  |-  ( t  =  X  ->  (
t  X.  t )  =  ( X  X.  X ) )
1110oveq2d 5722 . . . . . . . 8  |-  ( t  =  X  ->  ( RR  ^m  ( t  X.  t ) )  =  ( RR  ^m  ( X  X.  X ) ) )
12 raleq 2584 . . . . . . . . . . 11  |-  ( t  =  X  ->  ( A. z  e.  t 
( x d y )  <_  ( (
z d x )  +  ( z d y ) )  <->  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) )
1312anbi2d 455 . . . . . . . . . 10  |-  ( t  =  X  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) ) )
1413raleqbi1dv 2592 . . . . . . . . 9  |-  ( t  =  X  ->  ( A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) ) )
1514raleqbi1dv 2592 . . . . . . . 8  |-  ( t  =  X  ->  ( A. x  e.  t  A. y  e.  t 
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  t  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) ) )
1611, 15rabeqbidv 2636 . . . . . . 7  |-  ( t  =  X  ->  { d  e.  ( RR  ^m  ( t  X.  t
) )  |  A. x  e.  t  A. y  e.  t  (
( ( x d y )  =  0  <-> 
x  =  y )  /\  A. z  e.  t  ( x d y )  <_  (
( z d x )  +  ( z d y ) ) ) }  =  {
d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } )
17 df-met 11940 . . . . . . 7  |-  Met  =  ( t  e.  _V  |->  { d  e.  ( RR  ^m  ( t  X.  t ) )  |  A. x  e.  t  A. y  e.  t  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  t  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
1816, 17fvmptg 5429 . . . . . 6  |-  ( ( X  e.  _V  /\  { d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) }  e.  _V )  ->  ( Met `  X )  =  {
d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } )
198, 18mpdan 415 . . . . 5  |-  ( X  e.  _V  ->  ( Met `  X )  =  { d  e.  ( RR  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
201, 19syl 14 . . . 4  |-  ( X  e.  A  ->  ( Met `  X )  =  { d  e.  ( RR  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) } )
2120eleq2d 2169 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  D  e.  { d  e.  ( RR 
^m  ( X  X.  X ) )  | 
A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) ) } ) )
22 oveq 5712 . . . . . . . 8  |-  ( d  =  D  ->  (
x d y )  =  ( x D y ) )
2322eqeq1d 2108 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  =  0  <->  (
x D y )  =  0 ) )
2423bibi1d 232 . . . . . 6  |-  ( d  =  D  ->  (
( ( x d y )  =  0  <-> 
x  =  y )  <-> 
( ( x D y )  =  0  <-> 
x  =  y ) ) )
25 oveq 5712 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d x )  =  ( z D x ) )
26 oveq 5712 . . . . . . . . 9  |-  ( d  =  D  ->  (
z d y )  =  ( z D y ) )
2725, 26oveq12d 5724 . . . . . . . 8  |-  ( d  =  D  ->  (
( z d x )  +  ( z d y ) )  =  ( ( z D x )  +  ( z D y ) ) )
2822, 27breq12d 3888 . . . . . . 7  |-  ( d  =  D  ->  (
( x d y )  <_  ( (
z d x )  +  ( z d y ) )  <->  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) )
2928ralbidv 2396 . . . . . 6  |-  ( d  =  D  ->  ( A. z  e.  X  ( x d y )  <_  ( (
z d x )  +  ( z d y ) )  <->  A. z  e.  X  ( x D y )  <_ 
( ( z D x )  +  ( z D y ) ) ) )
3024, 29anbi12d 460 . . . . 5  |-  ( d  =  D  ->  (
( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) )
31302ralbidv 2418 . . . 4  |-  ( d  =  D  ->  ( A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y
)  /\  A. z  e.  X  ( x
d y )  <_ 
( ( z d x )  +  ( z d y ) ) )  <->  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) )
3231elrab 2793 . . 3  |-  ( D  e.  { d  e.  ( RR  ^m  ( X  X.  X ) )  |  A. x  e.  X  A. y  e.  X  ( ( ( x d y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x d y )  <_  ( ( z d x )  +  ( z d y ) ) ) }  <-> 
( D  e.  ( RR  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) )
3321, 32syl6bb 195 . 2  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D  e.  ( RR  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) ) )
34 sqxpexg 4593 . . . 4  |-  ( X  e.  A  ->  ( X  X.  X )  e. 
_V )
35 elmapg 6485 . . . 4  |-  ( ( RR  e.  _V  /\  ( X  X.  X
)  e.  _V )  ->  ( D  e.  ( RR  ^m  ( X  X.  X ) )  <-> 
D : ( X  X.  X ) --> RR ) )
363, 34, 35sylancr 408 . . 3  |-  ( X  e.  A  ->  ( D  e.  ( RR  ^m  ( X  X.  X
) )  <->  D :
( X  X.  X
) --> RR ) )
3736anbi1d 456 . 2  |-  ( X  e.  A  ->  (
( D  e.  ( RR  ^m  ( X  X.  X ) )  /\  A. x  e.  X  A. y  e.  X  ( ( ( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  (
x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) )  <-> 
( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x )  +  ( z D y ) ) ) ) ) )
3833, 37bitrd 187 1  |-  ( X  e.  A  ->  ( D  e.  ( Met `  X )  <->  ( D : ( X  X.  X ) --> RR  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x )  +  ( z D y ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1299    e. wcel 1448   A.wral 2375   {crab 2379   _Vcvv 2641   class class class wbr 3875    X. cxp 4475    Fn wfn 5054   -->wf 5055   ` cfv 5059  (class class class)co 5706    ^m cmap 6472   RRcr 7499   0cc0 7500    + caddc 7503    <_ cle 7673   Metcmet 11932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-map 6474  df-met 11940
This theorem is referenced by:  ismeti  12274  metflem  12277  ismet2  12282
  Copyright terms: Public domain W3C validator