ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpid11 Unicode version

Theorem xpid11 4900
Description: The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpid11  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )

Proof of Theorem xpid11
StepHypRef Expression
1 dmeq 4877 . . 3  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  dom  ( A  X.  A
)  =  dom  ( B  X.  B ) )
2 dmxpid 4898 . . 3  |-  dom  ( A  X.  A )  =  A
3 dmxpid 4898 . . 3  |-  dom  ( B  X.  B )  =  B
41, 2, 33eqtr3g 2260 . 2  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  A  =  B )
5 xpeq12 4693 . . 3  |-  ( ( A  =  B  /\  A  =  B )  ->  ( A  X.  A
)  =  ( B  X.  B ) )
65anidms 397 . 2  |-  ( A  =  B  ->  ( A  X.  A )  =  ( B  X.  B
) )
74, 6impbii 126 1  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372    X. cxp 4672   dom cdm 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-xp 4680  df-dm 4684
This theorem is referenced by:  intopsn  13170
  Copyright terms: Public domain W3C validator