ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpid11 Unicode version

Theorem xpid11 4920
Description: The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpid11  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )

Proof of Theorem xpid11
StepHypRef Expression
1 dmeq 4897 . . 3  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  dom  ( A  X.  A
)  =  dom  ( B  X.  B ) )
2 dmxpid 4918 . . 3  |-  dom  ( A  X.  A )  =  A
3 dmxpid 4918 . . 3  |-  dom  ( B  X.  B )  =  B
41, 2, 33eqtr3g 2263 . 2  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  A  =  B )
5 xpeq12 4712 . . 3  |-  ( ( A  =  B  /\  A  =  B )  ->  ( A  X.  A
)  =  ( B  X.  B ) )
65anidms 397 . 2  |-  ( A  =  B  ->  ( A  X.  A )  =  ( B  X.  B
) )
74, 6impbii 126 1  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    X. cxp 4691   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-dm 4703
This theorem is referenced by:  intopsn  13314
  Copyright terms: Public domain W3C validator