ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpid11 Unicode version

Theorem xpid11 4885
Description: The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpid11  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )

Proof of Theorem xpid11
StepHypRef Expression
1 dmeq 4862 . . 3  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  dom  ( A  X.  A
)  =  dom  ( B  X.  B ) )
2 dmxpid 4883 . . 3  |-  dom  ( A  X.  A )  =  A
3 dmxpid 4883 . . 3  |-  dom  ( B  X.  B )  =  B
41, 2, 33eqtr3g 2249 . 2  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  A  =  B )
5 xpeq12 4678 . . 3  |-  ( ( A  =  B  /\  A  =  B )  ->  ( A  X.  A
)  =  ( B  X.  B ) )
65anidms 397 . 2  |-  ( A  =  B  ->  ( A  X.  A )  =  ( B  X.  B
) )
74, 6impbii 126 1  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    X. cxp 4657   dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669
This theorem is referenced by:  intopsn  12950
  Copyright terms: Public domain W3C validator