ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpid11 Unicode version

Theorem xpid11 4890
Description: The Cartesian product of a class with itself is one-to-one. (Contributed by NM, 5-Nov-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
xpid11  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )

Proof of Theorem xpid11
StepHypRef Expression
1 dmeq 4867 . . 3  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  dom  ( A  X.  A
)  =  dom  ( B  X.  B ) )
2 dmxpid 4888 . . 3  |-  dom  ( A  X.  A )  =  A
3 dmxpid 4888 . . 3  |-  dom  ( B  X.  B )  =  B
41, 2, 33eqtr3g 2252 . 2  |-  ( ( A  X.  A )  =  ( B  X.  B )  ->  A  =  B )
5 xpeq12 4683 . . 3  |-  ( ( A  =  B  /\  A  =  B )  ->  ( A  X.  A
)  =  ( B  X.  B ) )
65anidms 397 . 2  |-  ( A  =  B  ->  ( A  X.  A )  =  ( B  X.  B
) )
74, 6impbii 126 1  |-  ( ( A  X.  A )  =  ( B  X.  B )  <->  A  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    X. cxp 4662   dom cdm 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-xp 4670  df-dm 4674
This theorem is referenced by:  intopsn  13069
  Copyright terms: Public domain W3C validator