ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxp2 Unicode version

Theorem elxp2 4677
Description: Membership in a cross product. (Contributed by NM, 23-Feb-2004.)
Assertion
Ref Expression
elxp2  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Distinct variable groups:    x, y, A   
x, B, y    x, C, y

Proof of Theorem elxp2
StepHypRef Expression
1 df-rex 2478 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  E. y
( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
) )
2 r19.42v 2651 . . . 4  |-  ( E. y  e.  C  ( x  e.  B  /\  A  =  <. x ,  y >. )  <->  ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
) )
3 an13 563 . . . . 5  |-  ( ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y >. )
)  <->  ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
43exbii 1616 . . . 4  |-  ( E. y ( y  e.  C  /\  ( x  e.  B  /\  A  =  <. x ,  y
>. ) )  <->  E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
51, 2, 43bitr3i 210 . . 3  |-  ( ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. )  <->  E. y ( A  =  <. x ,  y
>.  /\  ( x  e.  B  /\  y  e.  C ) ) )
65exbii 1616 . 2  |-  ( E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y >.
)  <->  E. x E. y
( A  =  <. x ,  y >.  /\  (
x  e.  B  /\  y  e.  C )
) )
7 df-rex 2478 . 2  |-  ( E. x  e.  B  E. y  e.  C  A  =  <. x ,  y
>. 
<->  E. x ( x  e.  B  /\  E. y  e.  C  A  =  <. x ,  y
>. ) )
8 elxp 4676 . 2  |-  ( A  e.  ( B  X.  C )  <->  E. x E. y ( A  = 
<. x ,  y >.  /\  ( x  e.  B  /\  y  e.  C
) ) )
96, 7, 83bitr4ri 213 1  |-  ( A  e.  ( B  X.  C )  <->  E. x  e.  B  E. y  e.  C  A  =  <. x ,  y >.
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   E.wrex 2473   <.cop 3621    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665
This theorem is referenced by:  opelxp  4689  xpiundi  4717  xpiundir  4718  ssrel2  4749  f1o2ndf1  6281  xpdom2  6885  elreal  7888
  Copyright terms: Public domain W3C validator