Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isxmet | Unicode version |
Description: Express the predicate " is an extended metric". (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
isxmet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . . . . 5 | |
2 | fnmap 6633 | . . . . . . . 8 | |
3 | xrex 9813 | . . . . . . . 8 | |
4 | sqxpexg 4727 | . . . . . . . 8 | |
5 | fnovex 5886 | . . . . . . . 8 | |
6 | 2, 3, 4, 5 | mp3an12i 1336 | . . . . . . 7 |
7 | rabexg 4132 | . . . . . . 7 | |
8 | 6, 7 | syl 14 | . . . . . 6 |
9 | xpeq12 4630 | . . . . . . . . . 10 | |
10 | 9 | anidms 395 | . . . . . . . . 9 |
11 | 10 | oveq2d 5869 | . . . . . . . 8 |
12 | raleq 2665 | . . . . . . . . . . 11 | |
13 | 12 | anbi2d 461 | . . . . . . . . . 10 |
14 | 13 | raleqbi1dv 2673 | . . . . . . . . 9 |
15 | 14 | raleqbi1dv 2673 | . . . . . . . 8 |
16 | 11, 15 | rabeqbidv 2725 | . . . . . . 7 |
17 | df-xmet 12782 | . . . . . . 7 | |
18 | 16, 17 | fvmptg 5572 | . . . . . 6 |
19 | 8, 18 | mpdan 419 | . . . . 5 |
20 | 1, 19 | syl 14 | . . . 4 |
21 | 20 | eleq2d 2240 | . . 3 |
22 | oveq 5859 | . . . . . . . 8 | |
23 | 22 | eqeq1d 2179 | . . . . . . 7 |
24 | 23 | bibi1d 232 | . . . . . 6 |
25 | oveq 5859 | . . . . . . . . 9 | |
26 | oveq 5859 | . . . . . . . . 9 | |
27 | 25, 26 | oveq12d 5871 | . . . . . . . 8 |
28 | 22, 27 | breq12d 4002 | . . . . . . 7 |
29 | 28 | ralbidv 2470 | . . . . . 6 |
30 | 24, 29 | anbi12d 470 | . . . . 5 |
31 | 30 | 2ralbidv 2494 | . . . 4 |
32 | 31 | elrab 2886 | . . 3 |
33 | 21, 32 | bitrdi 195 | . 2 |
34 | sqxpexg 4727 | . . . 4 | |
35 | elmapg 6639 | . . . 4 | |
36 | 3, 34, 35 | sylancr 412 | . . 3 |
37 | 36 | anbi1d 462 | . 2 |
38 | 33, 37 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 crab 2452 cvv 2730 class class class wbr 3989 cxp 4609 wfn 5193 wf 5194 cfv 5198 (class class class)co 5853 cmap 6626 cc0 7774 cxr 7953 cle 7955 cxad 9727 cxmet 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-xmet 12782 |
This theorem is referenced by: isxmetd 13141 xmetf 13144 ismet2 13148 xmeteq0 13153 xmettri2 13155 |
Copyright terms: Public domain | W3C validator |