Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isxmet | Unicode version |
Description: Express the predicate " is an extended metric". (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
isxmet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . . . . 5 | |
2 | fnmap 6645 | . . . . . . . 8 | |
3 | xrex 9827 | . . . . . . . 8 | |
4 | sqxpexg 4736 | . . . . . . . 8 | |
5 | fnovex 5898 | . . . . . . . 8 | |
6 | 2, 3, 4, 5 | mp3an12i 1341 | . . . . . . 7 |
7 | rabexg 4141 | . . . . . . 7 | |
8 | 6, 7 | syl 14 | . . . . . 6 |
9 | xpeq12 4639 | . . . . . . . . . 10 | |
10 | 9 | anidms 397 | . . . . . . . . 9 |
11 | 10 | oveq2d 5881 | . . . . . . . 8 |
12 | raleq 2670 | . . . . . . . . . . 11 | |
13 | 12 | anbi2d 464 | . . . . . . . . . 10 |
14 | 13 | raleqbi1dv 2678 | . . . . . . . . 9 |
15 | 14 | raleqbi1dv 2678 | . . . . . . . 8 |
16 | 11, 15 | rabeqbidv 2730 | . . . . . . 7 |
17 | df-xmet 13068 | . . . . . . 7 | |
18 | 16, 17 | fvmptg 5584 | . . . . . 6 |
19 | 8, 18 | mpdan 421 | . . . . 5 |
20 | 1, 19 | syl 14 | . . . 4 |
21 | 20 | eleq2d 2245 | . . 3 |
22 | oveq 5871 | . . . . . . . 8 | |
23 | 22 | eqeq1d 2184 | . . . . . . 7 |
24 | 23 | bibi1d 233 | . . . . . 6 |
25 | oveq 5871 | . . . . . . . . 9 | |
26 | oveq 5871 | . . . . . . . . 9 | |
27 | 25, 26 | oveq12d 5883 | . . . . . . . 8 |
28 | 22, 27 | breq12d 4011 | . . . . . . 7 |
29 | 28 | ralbidv 2475 | . . . . . 6 |
30 | 24, 29 | anbi12d 473 | . . . . 5 |
31 | 30 | 2ralbidv 2499 | . . . 4 |
32 | 31 | elrab 2891 | . . 3 |
33 | 21, 32 | bitrdi 196 | . 2 |
34 | sqxpexg 4736 | . . . 4 | |
35 | elmapg 6651 | . . . 4 | |
36 | 3, 34, 35 | sylancr 414 | . . 3 |
37 | 36 | anbi1d 465 | . 2 |
38 | 33, 37 | bitrd 188 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 crab 2457 cvv 2735 class class class wbr 3998 cxp 4618 wfn 5203 wf 5204 cfv 5208 (class class class)co 5865 cmap 6638 cc0 7786 cxr 7965 cle 7967 cxad 9741 cxmet 13060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-map 6640 df-pnf 7968 df-mnf 7969 df-xr 7970 df-xmet 13068 |
This theorem is referenced by: isxmetd 13427 xmetf 13430 ismet2 13434 xmeteq0 13439 xmettri2 13441 |
Copyright terms: Public domain | W3C validator |