| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > txtopon | Unicode version | ||
| Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| txtopon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 14688 |
. . 3
| |
| 2 | topontop 14688 |
. . 3
| |
| 3 | txtop 14934 |
. . 3
| |
| 4 | 1, 2, 3 | syl2an 289 |
. 2
|
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | eqid 2229 |
. . . . 5
| |
| 7 | eqid 2229 |
. . . . 5
| |
| 8 | 5, 6, 7 | txuni2 14930 |
. . . 4
|
| 9 | toponuni 14689 |
. . . . 5
| |
| 10 | toponuni 14689 |
. . . . 5
| |
| 11 | xpeq12 4738 |
. . . . 5
| |
| 12 | 9, 10, 11 | syl2an 289 |
. . . 4
|
| 13 | 5 | txbasex 14931 |
. . . . 5
|
| 14 | unitg 14736 |
. . . . 5
| |
| 15 | 13, 14 | syl 14 |
. . . 4
|
| 16 | 8, 12, 15 | 3eqtr4a 2288 |
. . 3
|
| 17 | 5 | txval 14929 |
. . . 4
|
| 18 | 17 | unieqd 3899 |
. . 3
|
| 19 | 16, 18 | eqtr4d 2265 |
. 2
|
| 20 | istopon 14687 |
. 2
| |
| 21 | 4, 19, 20 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-topgen 13293 df-top 14672 df-topon 14685 df-bases 14717 df-tx 14927 |
| This theorem is referenced by: txuni 14937 tx1cn 14943 tx2cn 14944 txcnp 14945 txcnmpt 14947 txdis1cn 14952 txlm 14953 lmcn2 14954 cnmpt12 14961 cnmpt2c 14964 cnmpt21 14965 cnmpt2t 14967 cnmpt22 14968 cnmpt22f 14969 cnmpt2res 14971 cnmptcom 14972 txmetcn 15193 limccnp2lem 15350 limccnp2cntop 15351 dvcnp2cntop 15373 dvaddxxbr 15375 dvmulxxbr 15376 dvcoapbr 15381 |
| Copyright terms: Public domain | W3C validator |