ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txtopon Unicode version

Theorem txtopon 14498
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )

Proof of Theorem txtopon
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 14250 . . 3  |-  ( R  e.  (TopOn `  X
)  ->  R  e.  Top )
2 topontop 14250 . . 3  |-  ( S  e.  (TopOn `  Y
)  ->  S  e.  Top )
3 txtop 14496 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 289 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  Top )
5 eqid 2196 . . . . 5  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
6 eqid 2196 . . . . 5  |-  U. R  =  U. R
7 eqid 2196 . . . . 5  |-  U. S  =  U. S
85, 6, 7txuni2 14492 . . . 4  |-  ( U. R  X.  U. S )  =  U. ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
9 toponuni 14251 . . . . 5  |-  ( R  e.  (TopOn `  X
)  ->  X  =  U. R )
10 toponuni 14251 . . . . 5  |-  ( S  e.  (TopOn `  Y
)  ->  Y  =  U. S )
11 xpeq12 4682 . . . . 5  |-  ( ( X  =  U. R  /\  Y  =  U. S )  ->  ( X  X.  Y )  =  ( U. R  X.  U. S ) )
129, 10, 11syl2an 289 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  ( U. R  X.  U. S ) )
135txbasex 14493 . . . . 5  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  _V )
14 unitg 14298 . . . . 5  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  _V  ->  U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) ) )  = 
U. ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )
1513, 14syl 14 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  U. ( topGen `
 ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  =  U. ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) ) )
168, 12, 153eqtr4a 2255 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
175txval 14491 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  =  (
topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
1817unieqd 3850 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  U. ( R  tX  S )  = 
U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) ) ) )
1916, 18eqtr4d 2232 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  U. ( R  tX  S ) )
20 istopon 14249 . 2  |-  ( ( R  tX  S )  e.  (TopOn `  ( X  X.  Y ) )  <-> 
( ( R  tX  S )  e.  Top  /\  ( X  X.  Y
)  =  U. ( R  tX  S ) ) )
214, 19, 20sylanbrc 417 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763   U.cuni 3839    X. cxp 4661   ran crn 4664   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   topGenctg 12925   Topctop 14233  TopOnctopon 14246    tX ctx 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-topgen 12931  df-top 14234  df-topon 14247  df-bases 14279  df-tx 14489
This theorem is referenced by:  txuni  14499  tx1cn  14505  tx2cn  14506  txcnp  14507  txcnmpt  14509  txdis1cn  14514  txlm  14515  lmcn2  14516  cnmpt12  14523  cnmpt2c  14526  cnmpt21  14527  cnmpt2t  14529  cnmpt22  14530  cnmpt22f  14531  cnmpt2res  14533  cnmptcom  14534  txmetcn  14755  limccnp2lem  14912  limccnp2cntop  14913  dvcnp2cntop  14935  dvaddxxbr  14937  dvmulxxbr  14938  dvcoapbr  14943
  Copyright terms: Public domain W3C validator