ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom3 GIF version

Theorem binom3 10349
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))

Proof of Theorem binom3
StepHypRef Expression
1 df-3 8737 . . . 4 3 = (2 + 1)
21oveq2i 5751 . . 3 ((𝐴 + 𝐵)↑3) = ((𝐴 + 𝐵)↑(2 + 1))
3 addcl 7709 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 2nn0 8945 . . . 4 2 ∈ ℕ0
5 expp1 10240 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
63, 4, 5sylancl 407 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(2 + 1)) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
72, 6syl5eq 2160 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)))
8 sqcl 10294 . . . . 5 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵)↑2) ∈ ℂ)
93, 8syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) ∈ ℂ)
10 simpl 108 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 simpr 109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
129, 10, 11adddid 7754 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)))
13 binom2 10343 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
1413oveq1d 5755 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴))
15 sqcl 10294 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ)
1610, 15syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
17 2cn 8748 . . . . . . . 8 2 ∈ ℂ
18 mulcl 7711 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
19 mulcl 7711 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · 𝐵) ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2017, 18, 19sylancr 408 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
2116, 20addcld 7749 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
22 sqcl 10294 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵↑2) ∈ ℂ)
2311, 22syl 14 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2421, 23, 10adddird 7755 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐴) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)))
2516, 20, 10adddird 7755 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
261oveq2i 5751 . . . . . . . . 9 (𝐴↑3) = (𝐴↑(2 + 1))
27 expp1 10240 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2810, 4, 27sylancl 407 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2926, 28syl5eq 2160 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) = ((𝐴↑2) · 𝐴))
30 sqval 10291 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
3110, 30syl 14 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
3231oveq1d 5755 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐴) · 𝐵))
3310, 10, 11mul32d 7879 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐴) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3432, 33eqtrd 2148 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
3534oveq2d 5756 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = (2 · ((𝐴 · 𝐵) · 𝐴)))
36 2cnd 8750 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈ ℂ)
3736, 18, 10mulassd 7753 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐴) = (2 · ((𝐴 · 𝐵) · 𝐴)))
3835, 37eqtr4d 2151 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) = ((2 · (𝐴 · 𝐵)) · 𝐴))
3929, 38oveq12d 5758 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) = (((𝐴↑2) · 𝐴) + ((2 · (𝐴 · 𝐵)) · 𝐴)))
4025, 39eqtr4d 2151 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) = ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))))
4123, 10mulcomd 7751 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐴) = (𝐴 · (𝐵↑2)))
4240, 41oveq12d 5758 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐴) + ((𝐵↑2) · 𝐴)) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4314, 24, 423eqtrd 2152 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐴) = (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))))
4413oveq1d 5755 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵))
4521, 23, 11adddird 7755 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) · 𝐵) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
46 sqval 10291 . . . . . . . . . . . . . 14 (𝐵 ∈ ℂ → (𝐵↑2) = (𝐵 · 𝐵))
4711, 46syl 14 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
4847oveq2d 5756 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = (𝐴 · (𝐵 · 𝐵)))
4910, 11, 11mulassd 7753 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐵) = (𝐴 · (𝐵 · 𝐵)))
5048, 49eqtr4d 2151 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) = ((𝐴 · 𝐵) · 𝐵))
5150oveq2d 5756 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5236, 18, 11mulassd 7753 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · 𝐵)) · 𝐵) = (2 · ((𝐴 · 𝐵) · 𝐵)))
5351, 52eqtr4d 2151 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) = ((2 · (𝐴 · 𝐵)) · 𝐵))
5453oveq2d 5756 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5516, 20, 11adddird 7755 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · 𝐵)) · 𝐵)))
5654, 55eqtr4d 2151 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵))
571oveq2i 5751 . . . . . . . 8 (𝐵↑3) = (𝐵↑(2 + 1))
58 expp1 10240 . . . . . . . . 9 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
5911, 4, 58sylancl 407 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
6057, 59syl5eq 2160 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) = ((𝐵↑2) · 𝐵))
6156, 60oveq12d 5758 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)))
6216, 11mulcld 7750 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
6310, 23mulcld 7750 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
64 mulcl 7711 . . . . . . . 8 ((2 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
6517, 63, 64sylancr 408 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · (𝐴 · (𝐵↑2))) ∈ ℂ)
66 3nn0 8946 . . . . . . . 8 3 ∈ ℕ0
67 expcl 10251 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
6811, 66, 67sylancl 407 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
6962, 65, 68addassd 7752 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) · 𝐵) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7061, 69eqtr3d 2150 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) · 𝐵) + ((𝐵↑2) · 𝐵)) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7144, 45, 703eqtrd 2152 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · 𝐵) = (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
7243, 71oveq12d 5758 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴 + 𝐵)↑2) · 𝐴) + (((𝐴 + 𝐵)↑2) · 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
73 expcl 10251 . . . . . 6 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
7410, 66, 73sylancl 407 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
75 mulcl 7711 . . . . . 6 ((2 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7617, 62, 75sylancr 408 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
7774, 76addcld 7749 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
7865, 68addcld 7749 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
7977, 63, 62, 78add4d 7895 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + (𝐴 · (𝐵↑2))) + (((𝐴↑2) · 𝐵) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8012, 72, 793eqtrd 2152 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑2) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))))
8174, 76, 62addassd 7752 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
821oveq1i 5750 . . . . . . 7 (3 · ((𝐴↑2) · 𝐵)) = ((2 + 1) · ((𝐴↑2) · 𝐵))
83 1cnd 7746 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
8436, 83, 62adddird 7755 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 + 1) · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8582, 84syl5eq 2160 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))))
8662mulid2d 7748 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑2) · 𝐵)) = ((𝐴↑2) · 𝐵))
8786oveq2d 5756 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((2 · ((𝐴↑2) · 𝐵)) + (1 · ((𝐴↑2) · 𝐵))) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8885, 87eqtrd 2148 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) = ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵)))
8988oveq2d 5756 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) = ((𝐴↑3) + ((2 · ((𝐴↑2) · 𝐵)) + ((𝐴↑2) · 𝐵))))
9081, 89eqtr4d 2151 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) = ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))))
91 1p2e3 8805 . . . . . . . 8 (1 + 2) = 3
9291oveq1i 5750 . . . . . . 7 ((1 + 2) · (𝐴 · (𝐵↑2))) = (3 · (𝐴 · (𝐵↑2)))
9383, 36, 63adddird 7755 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 2) · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9492, 93syl5eqr 2162 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))))
9563mulid2d 7748 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑2))) = (𝐴 · (𝐵↑2)))
9695oveq1d 5755 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑2))) + (2 · (𝐴 · (𝐵↑2)))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9794, 96eqtrd 2148 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) = ((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))))
9897oveq1d 5755 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) = (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)))
9963, 65, 68addassd 7752 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑2)) + (2 · (𝐴 · (𝐵↑2)))) + (𝐵↑3)) = ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
10098, 99eqtr2d 2149 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) = ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))
10190, 100oveq12d 5758 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (2 · ((𝐴↑2) · 𝐵))) + ((𝐴↑2) · 𝐵)) + ((𝐴 · (𝐵↑2)) + ((2 · (𝐴 · (𝐵↑2))) + (𝐵↑3)))) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
1027, 80, 1013eqtrd 2152 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  (class class class)co 5740  cc 7582  1c1 7585   + caddc 7587   · cmul 7589  2c2 8728  3c3 8729  0cn0 8928  cexp 10232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-n0 8929  df-z 9006  df-uz 9276  df-seqfrec 10159  df-exp 10233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator