| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | GIF version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn | ⊢ 2 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9113 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 8091 | 1 ⊢ 2 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ℂcc 7930 2c2 9094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 df-2 9102 |
| This theorem is referenced by: 2ex 9115 2cnd 9116 2m1e1 9161 3m1e2 9163 2p2e4 9170 times2 9172 2div2e1 9176 1p2e3 9178 3p3e6 9186 4p3e7 9188 5p3e8 9191 6p3e9 9194 2t1e2 9197 2t2e4 9198 3t3e9 9201 2t0e0 9203 4d2e2 9204 2cnne0 9253 1mhlfehlf 9262 8th4div3 9263 halfpm6th 9264 2mulicn 9266 2muliap0 9268 halfcl 9270 half0 9272 2halves 9273 halfaddsub 9278 div4p1lem1div2 9298 3halfnz 9477 zneo 9481 nneoor 9482 zeo 9485 7p3e10 9585 4t4e16 9609 6t3e18 9615 7t7e49 9624 8t5e40 9628 9t9e81 9639 decbin0 9650 decbin2 9651 halfthird 9653 fztpval 10212 fz0tp 10251 fz0to4untppr 10253 fzo0to3tp 10355 2tnp1ge0ge0 10451 fldiv4lem1div2 10457 expubnd 10748 sq2 10787 sq4e2t8 10789 cu2 10790 subsq2 10799 binom2sub 10805 binom3 10809 zesq 10810 fac2 10883 fac3 10884 faclbnd2 10894 bcn2 10916 4bc2eq6 10926 crre 11212 addcj 11246 imval2 11249 resqrexlemover 11365 resqrexlemcalc1 11369 resqrexlemnm 11373 resqrexlemcvg 11374 amgm2 11473 arisum 11853 arisum2 11854 geo2sum2 11870 geo2lim 11871 geoihalfsum 11877 efcllemp 12013 ege2le3 12026 tanval2ap 12068 tanval3ap 12069 efi4p 12072 efival 12087 sinadd 12091 cosadd 12092 sinmul 12099 cosmul 12100 cos2tsin 12106 ef01bndlem 12111 sin01bnd 12112 cos01bnd 12113 cos1bnd 12114 cos2bnd 12115 cos01gt0 12118 sin02gt0 12119 sin4lt0 12122 cos12dec 12123 egt2lt3 12135 odd2np1lem 12227 odd2np1 12228 ltoddhalfle 12248 halfleoddlt 12249 opoe 12250 omoe 12251 opeo 12252 omeo 12253 nno 12261 nn0o 12262 flodddiv4 12291 bits0 12303 bitsfzolem 12309 0bits 12314 bitsinv1 12317 6gcd4e2 12360 3lcm2e6woprm 12452 6lcm4e12 12453 sqrt2irrlem 12527 oddpwdclemodd 12538 pythagtriplem1 12632 pythagtriplem12 12642 pythagtriplem14 12644 4sqlem11 12768 4sqlem12 12769 dec5dvds 12779 dec2nprm 12782 2exp5 12799 2exp6 12800 2exp7 12801 2exp8 12802 2exp11 12803 2exp16 12804 maxcncf 15131 mincncf 15132 coscn 15286 sinhalfpilem 15307 cospi 15316 ef2pi 15321 ef2kpi 15322 efper 15323 sinperlem 15324 sin2kpi 15327 cos2kpi 15328 sin2pim 15329 cos2pim 15330 ptolemy 15340 sincosq3sgn 15344 sincosq4sgn 15345 sinq12gt0 15346 cosq23lt0 15349 coseq00topi 15351 tangtx 15354 sincos4thpi 15356 sincos6thpi 15358 sincos3rdpi 15359 pigt3 15360 abssinper 15362 coskpi 15364 cosq34lt1 15366 logsqrt 15439 2logb9irrALT 15490 1sgm2ppw 15511 perfect1 15514 perfectlem1 15515 perfectlem2 15516 perfect 15517 lgsdir2lem2 15550 gausslemma2dlem6 15588 lgsquadlem1 15598 lgsquadlem2 15599 lgsquad2lem2 15603 m1lgs 15606 2lgslem3a 15614 2lgslem3b 15615 2lgslem3c 15616 2lgslem3d 15617 2lgsoddprmlem2 15627 2lgsoddprmlem3c 15630 2lgsoddprmlem3d 15631 ex-fl 15735 ex-ceil 15736 ex-exp 15737 ex-fac 15738 |
| Copyright terms: Public domain | W3C validator |