| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | GIF version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn | ⊢ 2 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9077 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 8055 | 1 ⊢ 2 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7894 2c2 9058 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9066 |
| This theorem is referenced by: 2ex 9079 2cnd 9080 2m1e1 9125 3m1e2 9127 2p2e4 9134 times2 9136 2div2e1 9140 1p2e3 9142 3p3e6 9150 4p3e7 9152 5p3e8 9155 6p3e9 9158 2t1e2 9161 2t2e4 9162 3t3e9 9165 2t0e0 9167 4d2e2 9168 2cnne0 9217 1mhlfehlf 9226 8th4div3 9227 halfpm6th 9228 2mulicn 9230 2muliap0 9232 halfcl 9234 half0 9236 2halves 9237 halfaddsub 9242 div4p1lem1div2 9262 3halfnz 9440 zneo 9444 nneoor 9445 zeo 9448 7p3e10 9548 4t4e16 9572 6t3e18 9578 7t7e49 9587 8t5e40 9591 9t9e81 9602 decbin0 9613 decbin2 9614 halfthird 9616 fztpval 10175 fz0tp 10214 fz0to4untppr 10216 fzo0to3tp 10312 2tnp1ge0ge0 10408 fldiv4lem1div2 10414 expubnd 10705 sq2 10744 sq4e2t8 10746 cu2 10747 subsq2 10756 binom2sub 10762 binom3 10766 zesq 10767 fac2 10840 fac3 10841 faclbnd2 10851 bcn2 10873 4bc2eq6 10883 crre 11039 addcj 11073 imval2 11076 resqrexlemover 11192 resqrexlemcalc1 11196 resqrexlemnm 11200 resqrexlemcvg 11201 amgm2 11300 arisum 11680 arisum2 11681 geo2sum2 11697 geo2lim 11698 geoihalfsum 11704 efcllemp 11840 ege2le3 11853 tanval2ap 11895 tanval3ap 11896 efi4p 11899 efival 11914 sinadd 11918 cosadd 11919 sinmul 11926 cosmul 11927 cos2tsin 11933 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 cos1bnd 11941 cos2bnd 11942 cos01gt0 11945 sin02gt0 11946 sin4lt0 11949 cos12dec 11950 egt2lt3 11962 odd2np1lem 12054 odd2np1 12055 ltoddhalfle 12075 halfleoddlt 12076 opoe 12077 omoe 12078 opeo 12079 omeo 12080 nno 12088 nn0o 12089 flodddiv4 12118 bits0 12130 bitsfzolem 12136 0bits 12141 bitsinv1 12144 6gcd4e2 12187 3lcm2e6woprm 12279 6lcm4e12 12280 sqrt2irrlem 12354 oddpwdclemodd 12365 pythagtriplem1 12459 pythagtriplem12 12469 pythagtriplem14 12471 4sqlem11 12595 4sqlem12 12596 dec5dvds 12606 dec2nprm 12609 2exp5 12626 2exp6 12627 2exp7 12628 2exp8 12629 2exp11 12630 2exp16 12631 maxcncf 14935 mincncf 14936 coscn 15090 sinhalfpilem 15111 cospi 15120 ef2pi 15125 ef2kpi 15126 efper 15127 sinperlem 15128 sin2kpi 15131 cos2kpi 15132 sin2pim 15133 cos2pim 15134 ptolemy 15144 sincosq3sgn 15148 sincosq4sgn 15149 sinq12gt0 15150 cosq23lt0 15153 coseq00topi 15155 tangtx 15158 sincos4thpi 15160 sincos6thpi 15162 sincos3rdpi 15163 pigt3 15164 abssinper 15166 coskpi 15168 cosq34lt1 15170 logsqrt 15243 2logb9irrALT 15294 1sgm2ppw 15315 perfect1 15318 perfectlem1 15319 perfectlem2 15320 perfect 15321 lgsdir2lem2 15354 gausslemma2dlem6 15392 lgsquadlem1 15402 lgsquadlem2 15403 lgsquad2lem2 15407 m1lgs 15410 2lgslem3a 15418 2lgslem3b 15419 2lgslem3c 15420 2lgslem3d 15421 2lgsoddprmlem2 15431 2lgsoddprmlem3c 15434 2lgsoddprmlem3d 15435 ex-fl 15455 ex-ceil 15456 ex-exp 15457 ex-fac 15458 |
| Copyright terms: Public domain | W3C validator |