| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | GIF version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn | ⊢ 2 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9079 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 8057 | 1 ⊢ 2 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 ℂcc 7896 2c2 9060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-2 9068 |
| This theorem is referenced by: 2ex 9081 2cnd 9082 2m1e1 9127 3m1e2 9129 2p2e4 9136 times2 9138 2div2e1 9142 1p2e3 9144 3p3e6 9152 4p3e7 9154 5p3e8 9157 6p3e9 9160 2t1e2 9163 2t2e4 9164 3t3e9 9167 2t0e0 9169 4d2e2 9170 2cnne0 9219 1mhlfehlf 9228 8th4div3 9229 halfpm6th 9230 2mulicn 9232 2muliap0 9234 halfcl 9236 half0 9238 2halves 9239 halfaddsub 9244 div4p1lem1div2 9264 3halfnz 9442 zneo 9446 nneoor 9447 zeo 9450 7p3e10 9550 4t4e16 9574 6t3e18 9580 7t7e49 9589 8t5e40 9593 9t9e81 9604 decbin0 9615 decbin2 9616 halfthird 9618 fztpval 10177 fz0tp 10216 fz0to4untppr 10218 fzo0to3tp 10314 2tnp1ge0ge0 10410 fldiv4lem1div2 10416 expubnd 10707 sq2 10746 sq4e2t8 10748 cu2 10749 subsq2 10758 binom2sub 10764 binom3 10768 zesq 10769 fac2 10842 fac3 10843 faclbnd2 10853 bcn2 10875 4bc2eq6 10885 crre 11041 addcj 11075 imval2 11078 resqrexlemover 11194 resqrexlemcalc1 11198 resqrexlemnm 11202 resqrexlemcvg 11203 amgm2 11302 arisum 11682 arisum2 11683 geo2sum2 11699 geo2lim 11700 geoihalfsum 11706 efcllemp 11842 ege2le3 11855 tanval2ap 11897 tanval3ap 11898 efi4p 11901 efival 11916 sinadd 11920 cosadd 11921 sinmul 11928 cosmul 11929 cos2tsin 11935 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 cos1bnd 11943 cos2bnd 11944 cos01gt0 11947 sin02gt0 11948 sin4lt0 11951 cos12dec 11952 egt2lt3 11964 odd2np1lem 12056 odd2np1 12057 ltoddhalfle 12077 halfleoddlt 12078 opoe 12079 omoe 12080 opeo 12081 omeo 12082 nno 12090 nn0o 12091 flodddiv4 12120 bits0 12132 bitsfzolem 12138 0bits 12143 bitsinv1 12146 6gcd4e2 12189 3lcm2e6woprm 12281 6lcm4e12 12282 sqrt2irrlem 12356 oddpwdclemodd 12367 pythagtriplem1 12461 pythagtriplem12 12471 pythagtriplem14 12473 4sqlem11 12597 4sqlem12 12598 dec5dvds 12608 dec2nprm 12611 2exp5 12628 2exp6 12629 2exp7 12630 2exp8 12631 2exp11 12632 2exp16 12633 maxcncf 14959 mincncf 14960 coscn 15114 sinhalfpilem 15135 cospi 15144 ef2pi 15149 ef2kpi 15150 efper 15151 sinperlem 15152 sin2kpi 15155 cos2kpi 15156 sin2pim 15157 cos2pim 15158 ptolemy 15168 sincosq3sgn 15172 sincosq4sgn 15173 sinq12gt0 15174 cosq23lt0 15177 coseq00topi 15179 tangtx 15182 sincos4thpi 15184 sincos6thpi 15186 sincos3rdpi 15187 pigt3 15188 abssinper 15190 coskpi 15192 cosq34lt1 15194 logsqrt 15267 2logb9irrALT 15318 1sgm2ppw 15339 perfect1 15342 perfectlem1 15343 perfectlem2 15344 perfect 15345 lgsdir2lem2 15378 gausslemma2dlem6 15416 lgsquadlem1 15426 lgsquadlem2 15427 lgsquad2lem2 15431 m1lgs 15434 2lgslem3a 15442 2lgslem3b 15443 2lgslem3c 15444 2lgslem3d 15445 2lgsoddprmlem2 15455 2lgsoddprmlem3c 15458 2lgsoddprmlem3d 15459 ex-fl 15479 ex-ceil 15480 ex-exp 15481 ex-fac 15482 |
| Copyright terms: Public domain | W3C validator |