| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | GIF version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn | ⊢ 2 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9148 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 8126 | 1 ⊢ 2 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 ℂcc 7965 2c2 9129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 df-2 9137 |
| This theorem is referenced by: 2ex 9150 2cnd 9151 2m1e1 9196 3m1e2 9198 2p2e4 9205 times2 9207 2div2e1 9211 1p2e3 9213 3p3e6 9221 4p3e7 9223 5p3e8 9226 6p3e9 9229 2t1e2 9232 2t2e4 9233 3t3e9 9236 2t0e0 9238 4d2e2 9239 2cnne0 9288 1mhlfehlf 9297 8th4div3 9298 halfpm6th 9299 2mulicn 9301 2muliap0 9303 halfcl 9305 half0 9307 2halves 9308 halfaddsub 9313 div4p1lem1div2 9333 3halfnz 9512 zneo 9516 nneoor 9517 zeo 9520 7p3e10 9620 4t4e16 9644 6t3e18 9650 7t7e49 9659 8t5e40 9663 9t9e81 9674 decbin0 9685 decbin2 9686 halfthird 9688 fztpval 10247 fz0tp 10286 fz0to4untppr 10288 fzo0to3tp 10392 2tnp1ge0ge0 10488 fldiv4lem1div2 10494 expubnd 10785 sq2 10824 sq4e2t8 10826 cu2 10827 subsq2 10836 binom2sub 10842 binom3 10846 zesq 10847 fac2 10920 fac3 10921 faclbnd2 10931 bcn2 10953 4bc2eq6 10963 crre 11334 addcj 11368 imval2 11371 resqrexlemover 11487 resqrexlemcalc1 11491 resqrexlemnm 11495 resqrexlemcvg 11496 amgm2 11595 arisum 11975 arisum2 11976 geo2sum2 11992 geo2lim 11993 geoihalfsum 11999 efcllemp 12135 ege2le3 12148 tanval2ap 12190 tanval3ap 12191 efi4p 12194 efival 12209 sinadd 12213 cosadd 12214 sinmul 12221 cosmul 12222 cos2tsin 12228 ef01bndlem 12233 sin01bnd 12234 cos01bnd 12235 cos1bnd 12236 cos2bnd 12237 cos01gt0 12240 sin02gt0 12241 sin4lt0 12244 cos12dec 12245 egt2lt3 12257 odd2np1lem 12349 odd2np1 12350 ltoddhalfle 12370 halfleoddlt 12371 opoe 12372 omoe 12373 opeo 12374 omeo 12375 nno 12383 nn0o 12384 flodddiv4 12413 bits0 12425 bitsfzolem 12431 0bits 12436 bitsinv1 12439 6gcd4e2 12482 3lcm2e6woprm 12574 6lcm4e12 12575 sqrt2irrlem 12649 oddpwdclemodd 12660 pythagtriplem1 12754 pythagtriplem12 12764 pythagtriplem14 12766 4sqlem11 12890 4sqlem12 12891 dec5dvds 12901 dec2nprm 12904 2exp5 12921 2exp6 12922 2exp7 12923 2exp8 12924 2exp11 12925 2exp16 12926 maxcncf 15254 mincncf 15255 coscn 15409 sinhalfpilem 15430 cospi 15439 ef2pi 15444 ef2kpi 15445 efper 15446 sinperlem 15447 sin2kpi 15450 cos2kpi 15451 sin2pim 15452 cos2pim 15453 ptolemy 15463 sincosq3sgn 15467 sincosq4sgn 15468 sinq12gt0 15469 cosq23lt0 15472 coseq00topi 15474 tangtx 15477 sincos4thpi 15479 sincos6thpi 15481 sincos3rdpi 15482 pigt3 15483 abssinper 15485 coskpi 15487 cosq34lt1 15489 logsqrt 15562 2logb9irrALT 15613 1sgm2ppw 15634 perfect1 15637 perfectlem1 15638 perfectlem2 15639 perfect 15640 lgsdir2lem2 15673 gausslemma2dlem6 15711 lgsquadlem1 15721 lgsquadlem2 15722 lgsquad2lem2 15726 m1lgs 15729 2lgslem3a 15737 2lgslem3b 15738 2lgslem3c 15739 2lgslem3d 15740 2lgsoddprmlem2 15750 2lgsoddprmlem3c 15753 2lgsoddprmlem3d 15754 ex-fl 15999 ex-ceil 16000 ex-exp 16001 ex-fac 16002 |
| Copyright terms: Public domain | W3C validator |