| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2cn | GIF version | ||
| Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2cn | ⊢ 2 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 9188 | . 2 ⊢ 2 ∈ ℝ | |
| 2 | 1 | recni 8166 | 1 ⊢ 2 ∈ ℂ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 ℂcc 8005 2c2 9169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-2 9177 |
| This theorem is referenced by: 2ex 9190 2cnd 9191 2m1e1 9236 3m1e2 9238 2p2e4 9245 times2 9247 2div2e1 9251 1p2e3 9253 3p3e6 9261 4p3e7 9263 5p3e8 9266 6p3e9 9269 2t1e2 9272 2t2e4 9273 3t3e9 9276 2t0e0 9278 4d2e2 9279 2cnne0 9328 1mhlfehlf 9337 8th4div3 9338 halfpm6th 9339 2mulicn 9341 2muliap0 9343 halfcl 9345 half0 9347 2halves 9348 halfaddsub 9353 div4p1lem1div2 9373 3halfnz 9552 zneo 9556 nneoor 9557 zeo 9560 7p3e10 9660 4t4e16 9684 6t3e18 9690 7t7e49 9699 8t5e40 9703 9t9e81 9714 decbin0 9725 decbin2 9726 halfthird 9728 fztpval 10287 fz0tp 10326 fz0to4untppr 10328 fzo0to3tp 10433 2tnp1ge0ge0 10529 fldiv4lem1div2 10535 expubnd 10826 sq2 10865 sq4e2t8 10867 cu2 10868 subsq2 10877 binom2sub 10883 binom3 10887 zesq 10888 fac2 10961 fac3 10962 faclbnd2 10972 bcn2 10994 4bc2eq6 11004 crre 11376 addcj 11410 imval2 11413 resqrexlemover 11529 resqrexlemcalc1 11533 resqrexlemnm 11537 resqrexlemcvg 11538 amgm2 11637 arisum 12017 arisum2 12018 geo2sum2 12034 geo2lim 12035 geoihalfsum 12041 efcllemp 12177 ege2le3 12190 tanval2ap 12232 tanval3ap 12233 efi4p 12236 efival 12251 sinadd 12255 cosadd 12256 sinmul 12263 cosmul 12264 cos2tsin 12270 ef01bndlem 12275 sin01bnd 12276 cos01bnd 12277 cos1bnd 12278 cos2bnd 12279 cos01gt0 12282 sin02gt0 12283 sin4lt0 12286 cos12dec 12287 egt2lt3 12299 odd2np1lem 12391 odd2np1 12392 ltoddhalfle 12412 halfleoddlt 12413 opoe 12414 omoe 12415 opeo 12416 omeo 12417 nno 12425 nn0o 12426 flodddiv4 12455 bits0 12467 bitsfzolem 12473 0bits 12478 bitsinv1 12481 6gcd4e2 12524 3lcm2e6woprm 12616 6lcm4e12 12617 sqrt2irrlem 12691 oddpwdclemodd 12702 pythagtriplem1 12796 pythagtriplem12 12806 pythagtriplem14 12808 4sqlem11 12932 4sqlem12 12933 dec5dvds 12943 dec2nprm 12946 2exp5 12963 2exp6 12964 2exp7 12965 2exp8 12966 2exp11 12967 2exp16 12968 maxcncf 15297 mincncf 15298 coscn 15452 sinhalfpilem 15473 cospi 15482 ef2pi 15487 ef2kpi 15488 efper 15489 sinperlem 15490 sin2kpi 15493 cos2kpi 15494 sin2pim 15495 cos2pim 15496 ptolemy 15506 sincosq3sgn 15510 sincosq4sgn 15511 sinq12gt0 15512 cosq23lt0 15515 coseq00topi 15517 tangtx 15520 sincos4thpi 15522 sincos6thpi 15524 sincos3rdpi 15525 pigt3 15526 abssinper 15528 coskpi 15530 cosq34lt1 15532 logsqrt 15605 2logb9irrALT 15656 1sgm2ppw 15677 perfect1 15680 perfectlem1 15681 perfectlem2 15682 perfect 15683 lgsdir2lem2 15716 gausslemma2dlem6 15754 lgsquadlem1 15764 lgsquadlem2 15765 lgsquad2lem2 15769 m1lgs 15772 2lgslem3a 15780 2lgslem3b 15781 2lgslem3c 15782 2lgslem3d 15783 2lgsoddprmlem2 15793 2lgsoddprmlem3c 15796 2lgsoddprmlem3d 15797 ex-fl 16113 ex-ceil 16114 ex-exp 16115 ex-fac 16116 |
| Copyright terms: Public domain | W3C validator |