| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvoprab3 | GIF version | ||
| Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.) |
| Ref | Expression |
|---|---|
| cbvoprab3.1 | ⊢ Ⅎ𝑤𝜑 |
| cbvoprab3.2 | ⊢ Ⅎ𝑧𝜓 |
| cbvoprab3.3 | ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvoprab3 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 | . . . . . 6 ⊢ Ⅎ𝑤 𝑣 = 〈𝑥, 𝑦〉 | |
| 2 | cbvoprab3.1 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
| 3 | 1, 2 | nfan 1588 | . . . . 5 ⊢ Ⅎ𝑤(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | 3 | nfex 1660 | . . . 4 ⊢ Ⅎ𝑤∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 5 | 4 | nfex 1660 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 6 | nfv 1551 | . . . . . 6 ⊢ Ⅎ𝑧 𝑣 = 〈𝑥, 𝑦〉 | |
| 7 | cbvoprab3.2 | . . . . . 6 ⊢ Ⅎ𝑧𝜓 | |
| 8 | 6, 7 | nfan 1588 | . . . . 5 ⊢ Ⅎ𝑧(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓) |
| 9 | 8 | nfex 1660 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓) |
| 10 | 9 | nfex 1660 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓) |
| 11 | cbvoprab3.3 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | anbi2d 464 | . . . 4 ⊢ (𝑧 = 𝑤 → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 13 | 12 | 2exbidv 1891 | . . 3 ⊢ (𝑧 = 𝑤 → (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 14 | 5, 10, 13 | cbvopab2 4118 | . 2 ⊢ {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑣, 𝑤〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓)} |
| 15 | dfoprab2 5992 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 16 | dfoprab2 5992 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} = {〈𝑣, 𝑤〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 17 | 14, 15, 16 | 3eqtr4i 2236 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 Ⅎwnf 1483 ∃wex 1515 〈cop 3636 {copab 4104 {coprab 5945 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-oprab 5948 |
| This theorem is referenced by: cbvoprab3v 6022 tposoprab 6366 erovlem 6714 |
| Copyright terms: Public domain | W3C validator |