![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cbvoprab3 | GIF version |
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.) |
Ref | Expression |
---|---|
cbvoprab3.1 | ⊢ Ⅎ𝑤𝜑 |
cbvoprab3.2 | ⊢ Ⅎ𝑧𝜓 |
cbvoprab3.3 | ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvoprab3 | ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑤 𝑣 = ⟨𝑥, 𝑦⟩ | |
2 | cbvoprab3.1 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
3 | 1, 2 | nfan 1565 | . . . . 5 ⊢ Ⅎ𝑤(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
4 | 3 | nfex 1637 | . . . 4 ⊢ Ⅎ𝑤∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
5 | 4 | nfex 1637 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
6 | nfv 1528 | . . . . . 6 ⊢ Ⅎ𝑧 𝑣 = ⟨𝑥, 𝑦⟩ | |
7 | cbvoprab3.2 | . . . . . 6 ⊢ Ⅎ𝑧𝜓 | |
8 | 6, 7 | nfan 1565 | . . . . 5 ⊢ Ⅎ𝑧(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) |
9 | 8 | nfex 1637 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) |
10 | 9 | nfex 1637 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓) |
11 | cbvoprab3.3 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) | |
12 | 11 | anbi2d 464 | . . . 4 ⊢ (𝑧 = 𝑤 → ((𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
13 | 12 | 2exbidv 1868 | . . 3 ⊢ (𝑧 = 𝑤 → (∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
14 | 5, 10, 13 | cbvopab2 4079 | . 2 ⊢ {⟨𝑣, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑣, 𝑤⟩ ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} |
15 | dfoprab2 5924 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑣, 𝑧⟩ ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
16 | dfoprab2 5924 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓} = {⟨𝑣, 𝑤⟩ ∣ ∃𝑥∃𝑦(𝑣 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} | |
17 | 14, 15, 16 | 3eqtr4i 2208 | 1 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∃wex 1492 ⟨cop 3597 {copab 4065 {coprab 5878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 df-oprab 5881 |
This theorem is referenced by: cbvoprab3v 5954 tposoprab 6283 erovlem 6629 |
Copyright terms: Public domain | W3C validator |