| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvoprab3 | GIF version | ||
| Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.) |
| Ref | Expression |
|---|---|
| cbvoprab3.1 | ⊢ Ⅎ𝑤𝜑 |
| cbvoprab3.2 | ⊢ Ⅎ𝑧𝜓 |
| cbvoprab3.3 | ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvoprab3 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1550 | . . . . . 6 ⊢ Ⅎ𝑤 𝑣 = 〈𝑥, 𝑦〉 | |
| 2 | cbvoprab3.1 | . . . . . 6 ⊢ Ⅎ𝑤𝜑 | |
| 3 | 1, 2 | nfan 1587 | . . . . 5 ⊢ Ⅎ𝑤(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 4 | 3 | nfex 1659 | . . . 4 ⊢ Ⅎ𝑤∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 5 | 4 | nfex 1659 | . . 3 ⊢ Ⅎ𝑤∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 6 | nfv 1550 | . . . . . 6 ⊢ Ⅎ𝑧 𝑣 = 〈𝑥, 𝑦〉 | |
| 7 | cbvoprab3.2 | . . . . . 6 ⊢ Ⅎ𝑧𝜓 | |
| 8 | 6, 7 | nfan 1587 | . . . . 5 ⊢ Ⅎ𝑧(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓) |
| 9 | 8 | nfex 1659 | . . . 4 ⊢ Ⅎ𝑧∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓) |
| 10 | 9 | nfex 1659 | . . 3 ⊢ Ⅎ𝑧∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓) |
| 11 | cbvoprab3.3 | . . . . 5 ⊢ (𝑧 = 𝑤 → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | anbi2d 464 | . . . 4 ⊢ (𝑧 = 𝑤 → ((𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 13 | 12 | 2exbidv 1890 | . . 3 ⊢ (𝑧 = 𝑤 → (∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 14 | 5, 10, 13 | cbvopab2 4117 | . 2 ⊢ {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑣, 𝑤〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓)} |
| 15 | dfoprab2 5991 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑣, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 16 | dfoprab2 5991 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} = {〈𝑣, 𝑤〉 ∣ ∃𝑥∃𝑦(𝑣 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 17 | 14, 15, 16 | 3eqtr4i 2235 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑤〉 ∣ 𝜓} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 Ⅎwnf 1482 ∃wex 1514 〈cop 3635 {copab 4103 {coprab 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-opab 4105 df-oprab 5947 |
| This theorem is referenced by: cbvoprab3v 6021 tposoprab 6365 erovlem 6713 |
| Copyright terms: Public domain | W3C validator |