ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elopab GIF version

Theorem elopab 4312
Description: Membership in a class abstraction of ordered pairs. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elopab (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem elopab
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 2785 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → 𝐴 ∈ V)
2 vex 2776 . . . . . 6 𝑥 ∈ V
3 vex 2776 . . . . . 6 𝑦 ∈ V
42, 3opex 4281 . . . . 5 𝑥, 𝑦⟩ ∈ V
5 eleq1 2269 . . . . 5 (𝐴 = ⟨𝑥, 𝑦⟩ → (𝐴 ∈ V ↔ ⟨𝑥, 𝑦⟩ ∈ V))
64, 5mpbiri 168 . . . 4 (𝐴 = ⟨𝑥, 𝑦⟩ → 𝐴 ∈ V)
76adantr 276 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
87exlimivv 1921 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝐴 ∈ V)
9 eqeq1 2213 . . . . 5 (𝑧 = 𝐴 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝑦⟩))
109anbi1d 465 . . . 4 (𝑧 = 𝐴 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
11102exbidv 1892 . . 3 (𝑧 = 𝐴 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
12 df-opab 4114 . . 3 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
1311, 12elab2g 2924 . 2 (𝐴 ∈ V → (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)))
141, 8, 13pm5.21nii 706 1 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  cop 3641  {copab 4112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-opab 4114
This theorem is referenced by:  opelopabsbALT  4313  opelopabsb  4314  opelopabt  4316  opelopabga  4317  opabm  4335  iunopab  4336  epelg  4345  elxp  4700  elco  4852  elcnv  4863  dfmpt3  5408  0neqopab  6003  brabvv  6004  opabex3d  6219  opabex3  6220
  Copyright terms: Public domain W3C validator