ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltresr GIF version

Theorem ltresr 7771
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltresr (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)

Proof of Theorem ltresr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 7765 . . . 4 < ⊆ (ℝ × ℝ)
21brel 4650 . . 3 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ))
3 opelreal 7759 . . . 4 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
4 opelreal 7759 . . . 4 (⟨𝐵, 0R⟩ ∈ ℝ ↔ 𝐵R)
53, 4anbi12i 456 . . 3 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ↔ (𝐴R𝐵R))
62, 5sylib 121 . 2 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (𝐴R𝐵R))
7 ltrelsr 7670 . . 3 <R ⊆ (R × R)
87brel 4650 . 2 (𝐴 <R 𝐵 → (𝐴R𝐵R))
9 eleq1 2227 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ ℝ))
109anbi1d 461 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ)))
11 eqeq1 2171 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 = ⟨𝑧, 0R⟩ ↔ ⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩))
1211anbi1d 461 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩)))
1312anbi1d 461 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
14132exbidv 1855 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → (∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
1510, 14anbi12d 465 . . . . . . 7 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
16 eleq1 2227 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝐵, 0R⟩ ∈ ℝ))
1716anbi2d 460 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ)))
18 eqeq1 2171 . . . . . . . . . . 11 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 = ⟨𝑤, 0R⟩ ↔ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩))
1918anbi2d 460 . . . . . . . . . 10 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩)))
2019anbi1d 461 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
21202exbidv 1855 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
2217, 21anbi12d 465 . . . . . . 7 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
23 df-lt 7757 . . . . . . 7 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
2415, 22, 23brabg 4241 . . . . . 6 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
2524bianabs 601 . . . . 5 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
26 vex 2724 . . . . . . . . . . 11 𝑧 ∈ V
2726eqresr 7768 . . . . . . . . . 10 (⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩ ↔ 𝑧 = 𝐴)
28 eqcom 2166 . . . . . . . . . 10 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ ⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩)
29 eqcom 2166 . . . . . . . . . 10 (𝐴 = 𝑧𝑧 = 𝐴)
3027, 28, 293bitr4i 211 . . . . . . . . 9 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ 𝐴 = 𝑧)
31 vex 2724 . . . . . . . . . . 11 𝑤 ∈ V
3231eqresr 7768 . . . . . . . . . 10 (⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝑤 = 𝐵)
33 eqcom 2166 . . . . . . . . . 10 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ ⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩)
34 eqcom 2166 . . . . . . . . . 10 (𝐵 = 𝑤𝑤 = 𝐵)
3532, 33, 343bitr4i 211 . . . . . . . . 9 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ 𝐵 = 𝑤)
3630, 35anbi12i 456 . . . . . . . 8 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3726, 31opth2 4212 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3836, 37bitr4i 186 . . . . . . 7 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩)
3938anbi1i 454 . . . . . 6 (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
40392exbii 1593 . . . . 5 (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
4125, 40bitrdi 195 . . . 4 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
423, 4, 41syl2anbr 290 . . 3 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
43 breq12 3981 . . . 4 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧 <R 𝑤𝐴 <R 𝐵))
4443copsex2g 4218 . . 3 ((𝐴R𝐵R) → (∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤) ↔ 𝐴 <R 𝐵))
4542, 44bitrd 187 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵))
466, 8, 45pm5.21nii 694 1 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1342  wex 1479  wcel 2135  cop 3573   class class class wbr 3976  Rcnr 7229  0Rc0r 7230   <R cltr 7235  cr 7743   < cltrr 7748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-eprel 4261  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-irdg 6329  df-1o 6375  df-oadd 6379  df-omul 6380  df-er 6492  df-ec 6494  df-qs 6498  df-ni 7236  df-pli 7237  df-mi 7238  df-lti 7239  df-plpq 7276  df-mpq 7277  df-enq 7279  df-nqqs 7280  df-plqqs 7281  df-mqqs 7282  df-1nqqs 7283  df-rq 7284  df-ltnqqs 7285  df-inp 7398  df-i1p 7399  df-enr 7658  df-nr 7659  df-ltr 7662  df-0r 7663  df-r 7754  df-lt 7757
This theorem is referenced by:  ltresr2  7772  pitoregt0  7781  ltrennb  7786  ax0lt1  7808  axprecex  7812  axpre-ltirr  7814  axpre-ltwlin  7815  axpre-lttrn  7816  axpre-apti  7817  axpre-ltadd  7818  axpre-mulgt0  7819  axpre-mulext  7820  axarch  7823  axcaucvglemcau  7830  axcaucvglemres  7831  axpre-suploclemres  7833
  Copyright terms: Public domain W3C validator