ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltresr GIF version

Theorem ltresr 7901
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltresr (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)

Proof of Theorem ltresr
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 7895 . . . 4 < ⊆ (ℝ × ℝ)
21brel 4712 . . 3 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ))
3 opelreal 7889 . . . 4 (⟨𝐴, 0R⟩ ∈ ℝ ↔ 𝐴R)
4 opelreal 7889 . . . 4 (⟨𝐵, 0R⟩ ∈ ℝ ↔ 𝐵R)
53, 4anbi12i 460 . . 3 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ↔ (𝐴R𝐵R))
62, 5sylib 122 . 2 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ → (𝐴R𝐵R))
7 ltrelsr 7800 . . 3 <R ⊆ (R × R)
87brel 4712 . 2 (𝐴 <R 𝐵 → (𝐴R𝐵R))
9 eleq1 2256 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 ∈ ℝ ↔ ⟨𝐴, 0R⟩ ∈ ℝ))
109anbi1d 465 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ)))
11 eqeq1 2200 . . . . . . . . . . 11 (𝑥 = ⟨𝐴, 0R⟩ → (𝑥 = ⟨𝑧, 0R⟩ ↔ ⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩))
1211anbi1d 465 . . . . . . . . . 10 (𝑥 = ⟨𝐴, 0R⟩ → ((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩)))
1312anbi1d 465 . . . . . . . . 9 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
14132exbidv 1879 . . . . . . . 8 (𝑥 = ⟨𝐴, 0R⟩ → (∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
1510, 14anbi12d 473 . . . . . . 7 (𝑥 = ⟨𝐴, 0R⟩ → (((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
16 eleq1 2256 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 ∈ ℝ ↔ ⟨𝐵, 0R⟩ ∈ ℝ))
1716anbi2d 464 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ↔ (⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ)))
18 eqeq1 2200 . . . . . . . . . . 11 (𝑦 = ⟨𝐵, 0R⟩ → (𝑦 = ⟨𝑤, 0R⟩ ↔ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩))
1918anbi2d 464 . . . . . . . . . 10 (𝑦 = ⟨𝐵, 0R⟩ → ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ↔ (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩)))
2019anbi1d 465 . . . . . . . . 9 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
21202exbidv 1879 . . . . . . . 8 (𝑦 = ⟨𝐵, 0R⟩ → (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
2217, 21anbi12d 473 . . . . . . 7 (𝑦 = ⟨𝐵, 0R⟩ → (((⟨𝐴, 0R⟩ ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)) ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
23 df-lt 7887 . . . . . . 7 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
2415, 22, 23brabg 4300 . . . . . 6 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) ∧ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))))
2524bianabs 611 . . . . 5 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤)))
26 vex 2763 . . . . . . . . . . 11 𝑧 ∈ V
2726eqresr 7898 . . . . . . . . . 10 (⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩ ↔ 𝑧 = 𝐴)
28 eqcom 2195 . . . . . . . . . 10 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ ⟨𝑧, 0R⟩ = ⟨𝐴, 0R⟩)
29 eqcom 2195 . . . . . . . . . 10 (𝐴 = 𝑧𝑧 = 𝐴)
3027, 28, 293bitr4i 212 . . . . . . . . 9 (⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ↔ 𝐴 = 𝑧)
31 vex 2763 . . . . . . . . . . 11 𝑤 ∈ V
3231eqresr 7898 . . . . . . . . . 10 (⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝑤 = 𝐵)
33 eqcom 2195 . . . . . . . . . 10 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ ⟨𝑤, 0R⟩ = ⟨𝐵, 0R⟩)
34 eqcom 2195 . . . . . . . . . 10 (𝐵 = 𝑤𝑤 = 𝐵)
3532, 33, 343bitr4i 212 . . . . . . . . 9 (⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩ ↔ 𝐵 = 𝑤)
3630, 35anbi12i 460 . . . . . . . 8 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3726, 31opth2 4270 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ↔ (𝐴 = 𝑧𝐵 = 𝑤))
3836, 37bitr4i 187 . . . . . . 7 ((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩)
3938anbi1i 458 . . . . . 6 (((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
40392exbii 1617 . . . . 5 (∃𝑧𝑤((⟨𝐴, 0R⟩ = ⟨𝑧, 0R⟩ ∧ ⟨𝐵, 0R⟩ = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤) ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤))
4125, 40bitrdi 196 . . . 4 ((⟨𝐴, 0R⟩ ∈ ℝ ∧ ⟨𝐵, 0R⟩ ∈ ℝ) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
423, 4, 41syl2anbr 292 . . 3 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ ∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤)))
43 breq12 4035 . . . 4 ((𝑧 = 𝐴𝑤 = 𝐵) → (𝑧 <R 𝑤𝐴 <R 𝐵))
4443copsex2g 4276 . . 3 ((𝐴R𝐵R) → (∃𝑧𝑤(⟨𝐴, 𝐵⟩ = ⟨𝑧, 𝑤⟩ ∧ 𝑧 <R 𝑤) ↔ 𝐴 <R 𝐵))
4542, 44bitrd 188 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵))
466, 8, 45pm5.21nii 705 1 (⟨𝐴, 0R⟩ <𝐵, 0R⟩ ↔ 𝐴 <R 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  cop 3622   class class class wbr 4030  Rcnr 7359  0Rc0r 7360   <R cltr 7365  cr 7873   < cltrr 7878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-inp 7528  df-i1p 7529  df-enr 7788  df-nr 7789  df-ltr 7792  df-0r 7793  df-r 7884  df-lt 7887
This theorem is referenced by:  ltresr2  7902  pitoregt0  7911  ltrennb  7916  ax0lt1  7938  axprecex  7942  axpre-ltirr  7944  axpre-ltwlin  7945  axpre-lttrn  7946  axpre-apti  7947  axpre-ltadd  7948  axpre-mulgt0  7949  axpre-mulext  7950  axarch  7953  axcaucvglemcau  7960  axcaucvglemres  7961  axpre-suploclemres  7963
  Copyright terms: Public domain W3C validator