ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxpi GIF version

Theorem elxpi 4515
Description: Membership in a cross product. Uses fewer axioms than elxp 4516. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
elxpi (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxpi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2121 . . . . . 6 (𝑧 = 𝐴 → (𝑧 = ⟨𝑥, 𝑦⟩ ↔ 𝐴 = ⟨𝑥, 𝑦⟩))
21anbi1d 458 . . . . 5 (𝑧 = 𝐴 → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ (𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
322exbidv 1822 . . . 4 (𝑧 = 𝐴 → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
43elabg 2799 . . 3 (𝐴 ∈ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))} → (𝐴 ∈ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))))
54ibi 175 . 2 (𝐴 ∈ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))} → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
6 df-xp 4505 . . 3 (𝐵 × 𝐶) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)}
7 df-opab 3950 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))}
86, 7eqtri 2135 . 2 (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶))}
95, 8eleq2s 2209 1 (𝐴 ∈ (𝐵 × 𝐶) → ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wex 1451  wcel 1463  {cab 2101  cop 3496  {copab 3948   × cxp 4497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-opab 3950  df-xp 4505
This theorem is referenced by:  xpsspw  4611  dmaddpqlem  7133  nqpi  7134  enq0ref  7189  nqnq0  7197  nq0nn  7198  cnm  7567  axaddcl  7599  axmulcl  7601
  Copyright terms: Public domain W3C validator