ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunsn GIF version

Theorem ralunsn 3777
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralunsn.1 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
ralunsn (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐵   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem ralunsn
StepHypRef Expression
1 ralunb 3303 . 2 (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
2 ralunsn.1 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32ralsng 3616 . . 3 (𝐵𝐶 → (∀𝑥 ∈ {𝐵}𝜑𝜓))
43anbi2d 460 . 2 (𝐵𝐶 → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥𝐴 𝜑𝜓)))
51, 4syl5bb 191 1 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  cun 3114  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-sbc 2952  df-un 3120  df-sn 3582
This theorem is referenced by:  2ralunsn  3778  nnnninfeq2  7093
  Copyright terms: Public domain W3C validator