ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralunsn GIF version

Theorem ralunsn 3823
Description: Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralunsn.1 (𝑥 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
ralunsn (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐵   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem ralunsn
StepHypRef Expression
1 ralunb 3340 . 2 (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑))
2 ralunsn.1 . . . 4 (𝑥 = 𝐵 → (𝜑𝜓))
32ralsng 3658 . . 3 (𝐵𝐶 → (∀𝑥 ∈ {𝐵}𝜑𝜓))
43anbi2d 464 . 2 (𝐵𝐶 → ((∀𝑥𝐴 𝜑 ∧ ∀𝑥 ∈ {𝐵}𝜑) ↔ (∀𝑥𝐴 𝜑𝜓)))
51, 4bitrid 192 1 (𝐵𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥𝐴 𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cun 3151  {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-sbc 2986  df-un 3157  df-sn 3624
This theorem is referenced by:  2ralunsn  3824  nnnninfeq2  7188
  Copyright terms: Public domain W3C validator