ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abl32 GIF version

Theorem abl32 12906
Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
abl32.g (𝜑𝐺 ∈ Abel)
abl32.x (𝜑𝑋𝐵)
abl32.y (𝜑𝑌𝐵)
abl32.z (𝜑𝑍𝐵)
Assertion
Ref Expression
abl32 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))

Proof of Theorem abl32
StepHypRef Expression
1 abl32.g . . 3 (𝜑𝐺 ∈ Abel)
2 ablcmn 12891 . . 3 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 14 . 2 (𝜑𝐺 ∈ CMnd)
4 abl32.x . 2 (𝜑𝑋𝐵)
5 abl32.y . 2 (𝜑𝑌𝐵)
6 abl32.z . 2 (𝜑𝑍𝐵)
7 ablcom.b . . 3 𝐵 = (Base‘𝐺)
8 ablcom.p . . 3 + = (+g𝐺)
97, 8cmn32 12903 . 2 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
103, 4, 5, 6, 9syl13anc 1240 1 (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  cfv 5208  (class class class)co 5865  Basecbs 12428  +gcplusg 12492  CMndccmn 12884  Abelcabl 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12431  df-slot 12432  df-base 12434  df-plusg 12505  df-sgrp 12673  df-mnd 12683  df-cmn 12886  df-abl 12887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator