| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abl32 | GIF version | ||
| Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablcmn 13431 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | cmn32 13444 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1251 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5923 Basecbs 12688 +gcplusg 12765 CMndccmn 13424 Abelcabl 13425 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7972 ax-resscn 7973 ax-1re 7975 ax-addrcl 7978 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5926 df-inn 8993 df-2 9051 df-ndx 12691 df-slot 12692 df-base 12694 df-plusg 12778 df-sgrp 13055 df-mnd 13068 df-cmn 13426 df-abl 13427 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |