| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > abl32 | GIF version | ||
| Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablcom.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablcom.p | ⊢ + = (+g‘𝐺) |
| abl32.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| abl32.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| abl32.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| abl32.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| abl32 | ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abl32.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablcmn 13397 | . . 3 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 4 | abl32.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | abl32.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | abl32.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 7 | ablcom.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 8 | ablcom.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | cmn32 13410 | . 2 ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| 10 | 3, 4, 5, 6, 9 | syl13anc 1251 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12654 +gcplusg 12731 CMndccmn 13390 Abelcabl 13391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7968 ax-resscn 7969 ax-1re 7971 ax-addrcl 7974 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-inn 8988 df-2 9046 df-ndx 12657 df-slot 12658 df-base 12660 df-plusg 12744 df-sgrp 13021 df-mnd 13034 df-cmn 13392 df-abl 13393 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |