ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablcom GIF version

Theorem ablcom 13683
Description: An Abelian group operation is commutative. (Contributed by NM, 26-Aug-2011.)
Hypotheses
Ref Expression
ablcom.b 𝐵 = (Base‘𝐺)
ablcom.p + = (+g𝐺)
Assertion
Ref Expression
ablcom ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))

Proof of Theorem ablcom
StepHypRef Expression
1 ablcmn 13671 . 2 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
2 ablcom.b . . 3 𝐵 = (Base‘𝐺)
3 ablcom.p . . 3 + = (+g𝐺)
42, 3cmncom 13682 . 2 ((𝐺 ∈ CMnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
51, 4syl3an1 1283 1 ((𝐺 ∈ Abel ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  CMndccmn 13664  Abelcabl 13665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-iota 5237  df-fv 5284  df-ov 5954  df-cmn 13666  df-abl 13667
This theorem is referenced by:  ablinvadd  13690  ablsub2inv  13691  ablsubadd  13692  abladdsub  13695  ablpncan3  13697  ablsub32  13702  ablnnncan  13703  ablsubsub23  13705  eqgabl  13710  subgabl  13712  ablnsg  13714  ablressid  13715  imasabl  13716  subrngringnsg  14011
  Copyright terms: Public domain W3C validator