| Step | Hyp | Ref
| Expression |
| 1 | | zringbas 14152 |
. . . . 5
⊢ ℤ =
(Base‘ℤring) |
| 2 | | zring0 14156 |
. . . . 5
⊢ 0 =
(0g‘ℤring) |
| 3 | | zringabl 14150 |
. . . . . 6
⊢
ℤring ∈ Abel |
| 4 | | ablcmn 13421 |
. . . . . 6
⊢
(ℤring ∈ Abel → ℤring ∈
CMnd) |
| 5 | 3, 4 | mp1i 10 |
. . . . 5
⊢ (𝜑 → ℤring
∈ CMnd) |
| 6 | | lgseisen.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 7 | 6 | eldifad 3168 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 8 | | prmnn 12278 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 9 | 8 | nnnn0d 9302 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ0) |
| 10 | 7, 9 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 11 | | lgseisen.7 |
. . . . . . . . 9
⊢ 𝑌 =
(ℤ/nℤ‘𝑃) |
| 12 | 11 | zncrng 14201 |
. . . . . . . 8
⊢ (𝑃 ∈ ℕ0
→ 𝑌 ∈
CRing) |
| 13 | 10, 12 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ CRing) |
| 14 | | lgseisen.8 |
. . . . . . . 8
⊢ 𝐺 = (mulGrp‘𝑌) |
| 15 | 14 | crngmgp 13560 |
. . . . . . 7
⊢ (𝑌 ∈ CRing → 𝐺 ∈ CMnd) |
| 16 | 13, 15 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 17 | 16 | cmnmndd 13438 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 18 | | 1zzd 9353 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
| 19 | | oddprm 12428 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) |
| 20 | 6, 19 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ) |
| 21 | 20 | nnzd 9447 |
. . . . 5
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℤ) |
| 22 | 13 | crngringd 13565 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ Ring) |
| 23 | | lgseisen.9 |
. . . . . . . . . 10
⊢ 𝐿 = (ℤRHom‘𝑌) |
| 24 | 23 | zrhrhm 14179 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
| 25 | 22, 24 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom
𝑌)) |
| 26 | | eqid 2196 |
. . . . . . . . 9
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 27 | 1, 26 | rhmf 13719 |
. . . . . . . 8
⊢ (𝐿 ∈ (ℤring
RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 28 | 25, 27 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
| 29 | | m1expcl 10654 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ →
(-1↑𝑘) ∈
ℤ) |
| 30 | 29 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (-1↑𝑘) ∈
ℤ) |
| 31 | 28, 30 | cofmpt 5731 |
. . . . . 6
⊢ (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) = (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘)))) |
| 32 | | zringmpg 14162 |
. . . . . . . . 9
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
(mulGrp‘ℤring) |
| 33 | 32, 14 | rhmmhm 13715 |
. . . . . . . 8
⊢ (𝐿 ∈ (ℤring
RingHom 𝑌) → 𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺)) |
| 34 | 25, 33 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺)) |
| 35 | | neg1cn 9095 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
| 36 | | neg1ap0 9099 |
. . . . . . . . . . 11
⊢ -1 #
0 |
| 37 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
| 38 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) =
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
| 39 | 37, 38 | expghmap 14163 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ -1 # 0) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring GrpHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0}))) |
| 40 | 35, 36, 39 | mp2an 426 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring GrpHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) |
| 41 | | ghmmhm 13383 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring GrpHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) → (𝑘 ∈
ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}))) |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) |
| 43 | | cnring 14126 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
| 44 | | cnfldui 14145 |
. . . . . . . . . . 11
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} =
(Unit‘ℂfld) |
| 45 | 44, 37 | unitsubm 13675 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring → {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∈
(SubMnd‘(mulGrp‘ℂfld))) |
| 46 | 43, 45 | ax-mp 5 |
. . . . . . . . 9
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∈
(SubMnd‘(mulGrp‘ℂfld)) |
| 47 | 38 | resmhm2 13120 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) ∧ {𝑧 ∈
ℂ ∣ 𝑧 # 0}
∈ (SubMnd‘(mulGrp‘ℂfld))) → (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom
(mulGrp‘ℂfld))) |
| 48 | 42, 46, 47 | mp2an 426 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom
(mulGrp‘ℂfld)) |
| 49 | | zsubrg 14137 |
. . . . . . . . . 10
⊢ ℤ
∈ (SubRing‘ℂfld) |
| 50 | 37 | subrgsubm 13790 |
. . . . . . . . . 10
⊢ (ℤ
∈ (SubRing‘ℂfld) → ℤ ∈
(SubMnd‘(mulGrp‘ℂfld))) |
| 51 | 49, 50 | ax-mp 5 |
. . . . . . . . 9
⊢ ℤ
∈ (SubMnd‘(mulGrp‘ℂfld)) |
| 52 | 30 | fmpttd 5717 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)):ℤ⟶ℤ) |
| 53 | 52 | frnd 5417 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆
ℤ) |
| 54 | | eqid 2196 |
. . . . . . . . . 10
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
((mulGrp‘ℂfld) ↾s
ℤ) |
| 55 | 54 | resmhm2b 13121 |
. . . . . . . . 9
⊢ ((ℤ
∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ⊆
ℤ) → ((𝑘 ∈
ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom
(mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ)))) |
| 56 | 51, 53, 55 | sylancr 414 |
. . . . . . . 8
⊢ (𝜑 → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring MndHom (mulGrp‘ℂfld)) ↔
(𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ)))) |
| 57 | 48, 56 | mpbii 148 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ))) |
| 58 | | mhmco 13122 |
. . . . . . 7
⊢ ((𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺) ∧ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ))) → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈
(ℤring MndHom 𝐺)) |
| 59 | 34, 57, 58 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈
(ℤring MndHom 𝐺)) |
| 60 | 31, 59 | eqeltrrd 2274 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))) ∈ (ℤring MndHom
𝐺)) |
| 61 | | lgseisen.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
| 62 | 61 | gausslemma2dlem0a 15290 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ ℕ) |
| 63 | 62 | nnzd 9447 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 64 | 63 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ) |
| 65 | 6 | gausslemma2dlem0a 15290 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 66 | 65 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ) |
| 67 | | znq 9698 |
. . . . . . . 8
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ) |
| 68 | 64, 66, 67 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℚ) |
| 69 | | 2nn 9152 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
| 70 | | elfznn 10129 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ) |
| 71 | 70 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ) |
| 72 | | nnmulcl 9011 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑥
∈ ℕ) → (2 · 𝑥) ∈ ℕ) |
| 73 | 69, 71, 72 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℕ) |
| 74 | 73 | nnzd 9447 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℤ) |
| 75 | | zq 9700 |
. . . . . . . 8
⊢ ((2
· 𝑥) ∈ ℤ
→ (2 · 𝑥)
∈ ℚ) |
| 76 | 74, 75 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℚ) |
| 77 | | qmulcl 9711 |
. . . . . . 7
⊢ (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) |
| 78 | 68, 76, 77 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) |
| 79 | 78 | flqcld 10367 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈
ℤ) |
| 80 | | oveq2 5930 |
. . . . . 6
⊢ (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (-1↑𝑘) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 81 | 80 | fveq2d 5562 |
. . . . 5
⊢ (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
| 82 | | oveq2 5930 |
. . . . . 6
⊢ (𝑘 = (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (-1↑𝑘) =
(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) |
| 83 | 82 | fveq2d 5562 |
. . . . 5
⊢ (𝑘 = (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
| 84 | 1, 2, 5, 17, 18, 21, 60, 79, 81, 83 | gsumfzmhm2 13474 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑(ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
| 85 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 86 | | eqid 2196 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 87 | 28 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌)) |
| 88 | | m1expcl 10654 |
. . . . . . . . . . 11
⊢
((⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥))) ∈ ℤ →
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈
ℤ) |
| 89 | 79, 88 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈
ℤ) |
| 90 | 87, 89 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝑌)) |
| 91 | 14, 26 | mgpbasg 13482 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ CRing →
(Base‘𝑌) =
(Base‘𝐺)) |
| 92 | 13, 91 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑌) = (Base‘𝐺)) |
| 93 | 92 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (Base‘𝑌) = (Base‘𝐺)) |
| 94 | 90, 93 | eleqtrd 2275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝐺)) |
| 95 | | neg1z 9358 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℤ |
| 96 | | lgseisen.4 |
. . . . . . . . . . . . 13
⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) |
| 97 | 61 | eldifad 3168 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑄 ∈ ℙ) |
| 98 | 97 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ) |
| 99 | | prmz 12279 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
| 100 | 98, 99 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ) |
| 101 | 100, 74 | zmulcld 9454 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ) |
| 102 | 7 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ) |
| 103 | 102, 8 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ) |
| 104 | 101, 103 | zmodcld 10437 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈
ℕ0) |
| 105 | 96, 104 | eqeltrid 2283 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈
ℕ0) |
| 106 | | zexpcl 10646 |
. . . . . . . . . . . 12
⊢ ((-1
∈ ℤ ∧ 𝑅
∈ ℕ0) → (-1↑𝑅) ∈ ℤ) |
| 107 | 95, 105, 106 | sylancr 414 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈
ℤ) |
| 108 | 107, 100 | zmulcld 9454 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ) |
| 109 | 87, 108 | ffvelcdmd 5698 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌)) |
| 110 | 109, 93 | eleqtrd 2275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺)) |
| 111 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
| 112 | | eqid 2196 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) |
| 113 | 85, 86, 16, 18, 21, 94, 110, 111, 112 | gsumfzmptfidmadd2 13470 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
| 114 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(.r‘𝑌) = (.r‘𝑌) |
| 115 | 14, 114 | mgpplusgg 13480 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ CRing →
(.r‘𝑌) =
(+g‘𝐺)) |
| 116 | 13, 115 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (.r‘𝑌) = (+g‘𝐺)) |
| 117 | 116 | ofeqd 6137 |
. . . . . . . . 9
⊢ (𝜑 →
∘𝑓 (.r‘𝑌) = ∘𝑓
(+g‘𝐺)) |
| 118 | 117 | oveqd 5939 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) |
| 119 | 118 | oveq2d 5938 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
| 120 | 116 | oveqd 5939 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
| 121 | 113, 119,
120 | 3eqtr4d 2239 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
| 122 | 18, 21 | fzfigd 10523 |
. . . . . . . . 9
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ∈
Fin) |
| 123 | | eqidd 2197 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) |
| 124 | | eqidd 2197 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) |
| 125 | 122, 90, 109, 123, 124 | offval2 6151 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))) |
| 126 | 25 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom
𝑌)) |
| 127 | | zringmulr 14155 |
. . . . . . . . . . . 12
⊢ ·
= (.r‘ℤring) |
| 128 | 1, 127, 114 | rhmmul 13720 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑌) ∧
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈ ℤ ∧
((-1↑𝑅) · 𝑄) ∈ ℤ) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) |
| 129 | 126, 89, 108, 128 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) |
| 130 | 62 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℕ) |
| 131 | 130, 73 | nnmulcld 9039 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℕ) |
| 132 | | nnq 9707 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑄 · (2 · 𝑥)) ∈ ℕ → (𝑄 · (2 · 𝑥)) ∈
ℚ) |
| 133 | 131, 132 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℚ) |
| 134 | | nnq 9707 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℚ) |
| 135 | 65, 134 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑃 ∈ ℚ) |
| 136 | 135 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℚ) |
| 137 | 66 | nngt0d 9034 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 𝑃) |
| 138 | | modqval 10416 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑄 · (2 · 𝑥)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 <
𝑃) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))))) |
| 139 | 133, 136,
137, 138 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))))) |
| 140 | 96, 139 | eqtrid 2241 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))))) |
| 141 | 100 | zcnd 9449 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ) |
| 142 | 73 | nncnd 9004 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℂ) |
| 143 | 103 | nncnd 9004 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ) |
| 144 | 103 | nnap0d 9036 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 # 0) |
| 145 | 141, 142,
143, 144 | div23apd 8855 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑥))) |
| 146 | 145 | fveq2d 5562 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 ·
(2 · 𝑥)) / 𝑃)) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
| 147 | 146 | oveq2d 5938 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))) = (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 148 | 147 | oveq2d 5938 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
| 149 | 140, 148 | eqtrd 2229 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
| 150 | 149 | oveq2d 5938 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) |
| 151 | | prmz 12279 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 152 | 102, 151 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ) |
| 153 | 152, 79 | zmulcld 9454 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) |
| 154 | 153 | zcnd 9449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ) |
| 155 | 101 | zcnd 9449 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℂ) |
| 156 | 154, 155 | pncan3d 8340 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑄 · (2 · 𝑥))) |
| 157 | | 2cnd 9063 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℂ) |
| 158 | 71 | nncnd 9004 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℂ) |
| 159 | 141, 157,
158 | mul12d 8178 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) = (2 · (𝑄 · 𝑥))) |
| 160 | 150, 156,
159 | 3eqtrd 2233 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = (2 · (𝑄 · 𝑥))) |
| 161 | 160 | oveq2d 5938 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = (-1↑(2 · (𝑄 · 𝑥)))) |
| 162 | 35 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈
ℂ) |
| 163 | 36 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 #
0) |
| 164 | 105 | nn0zd 9446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ) |
| 165 | | expaddzap 10675 |
. . . . . . . . . . . . . . . 16
⊢ (((-1
∈ ℂ ∧ -1 # 0) ∧ ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ 𝑅 ∈ ℤ)) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅))) |
| 166 | 162, 163,
153, 164, 165 | syl22anc 1250 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅))) |
| 167 | | expmulzap 10677 |
. . . . . . . . . . . . . . . . . 18
⊢ (((-1
∈ ℂ ∧ -1 # 0) ∧ (𝑃 ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 168 | 162, 163,
152, 79, 167 | syl22anc 1250 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 169 | | 1cnd 8042 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈
ℂ) |
| 170 | | eldifsni 3751 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) |
| 171 | 6, 170 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑃 ≠ 2) |
| 172 | 171 | necomd 2453 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 2 ≠ 𝑃) |
| 173 | 172 | neneqd 2388 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ¬ 2 = 𝑃) |
| 174 | 173 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 = 𝑃) |
| 175 | | 2z 9354 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℤ |
| 176 | | uzid 9615 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
| 177 | 175, 176 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
(ℤ≥‘2) |
| 178 | | dvdsprm 12305 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
| 179 | 177, 102,
178 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
| 180 | 174, 179 | mtbird 674 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 ∥
𝑃) |
| 181 | | oexpneg 12042 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℂ ∧ 𝑃
∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (-1↑𝑃) = -(1↑𝑃)) |
| 182 | 169, 103,
180, 181 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -(1↑𝑃)) |
| 183 | | 1exp 10660 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃 ∈ ℤ →
(1↑𝑃) =
1) |
| 184 | 152, 183 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑𝑃) = 1) |
| 185 | 184 | negeqd 8221 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → -(1↑𝑃) = -1) |
| 186 | 182, 185 | eqtrd 2229 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -1) |
| 187 | 186 | oveq1d 5937 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 188 | 168, 187 | eqtrd 2229 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 189 | 188 | oveq1d 5937 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅))) |
| 190 | 166, 189 | eqtrd 2229 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅))) |
| 191 | | nnmulcl 9011 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝑄 · 𝑥) ∈ ℕ) |
| 192 | 62, 70, 191 | syl2an 289 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ) |
| 193 | 192 | nnnn0d 9302 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈
ℕ0) |
| 194 | | 2nn0 9266 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ0 |
| 195 | 194 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℕ0) |
| 196 | 162, 193,
195 | expmuld 10768 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2
· (𝑄 · 𝑥))) = ((-1↑2)↑(𝑄 · 𝑥))) |
| 197 | | neg1sqe1 10726 |
. . . . . . . . . . . . . . . . 17
⊢
(-1↑2) = 1 |
| 198 | 197 | oveq1i 5932 |
. . . . . . . . . . . . . . . 16
⊢
((-1↑2)↑(𝑄
· 𝑥)) =
(1↑(𝑄 · 𝑥)) |
| 199 | 192 | nnzd 9447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℤ) |
| 200 | | 1exp 10660 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄 · 𝑥) ∈ ℤ → (1↑(𝑄 · 𝑥)) = 1) |
| 201 | 199, 200 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑(𝑄 · 𝑥)) = 1) |
| 202 | 198, 201 | eqtrid 2241 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
((-1↑2)↑(𝑄
· 𝑥)) =
1) |
| 203 | 196, 202 | eqtrd 2229 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2
· (𝑄 · 𝑥))) = 1) |
| 204 | 161, 190,
203 | 3eqtr3d 2237 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) = 1) |
| 205 | 204 | oveq1d 5937 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = (1 · 𝑄)) |
| 206 | 89 | zcnd 9449 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈
ℂ) |
| 207 | 107 | zcnd 9449 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈
ℂ) |
| 208 | 206, 207,
141 | mulassd 8050 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) |
| 209 | 141 | mullidd 8044 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑄) = 𝑄) |
| 210 | 205, 208,
209 | 3eqtr3d 2237 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)) = 𝑄) |
| 211 | 210 | fveq2d 5562 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = (𝐿‘𝑄)) |
| 212 | 129, 211 | eqtr3d 2231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄))) = (𝐿‘𝑄)) |
| 213 | 212 | mpteq2dva 4123 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) |
| 214 | 125, 213 | eqtrd 2229 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) |
| 215 | 214 | oveq2d 5938 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄)))) |
| 216 | | lgseisen.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| 217 | | lgseisen.5 |
. . . . . . . 8
⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) |
| 218 | | lgseisen.6 |
. . . . . . . 8
⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) |
| 219 | 6, 61, 216, 96, 217, 218, 11, 14, 23 | lgseisenlem3 15313 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r‘𝑌)) |
| 220 | 219 | oveq2d 5938 |
. . . . . 6
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌))) |
| 221 | 121, 215,
220 | 3eqtr3rd 2238 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄)))) |
| 222 | | eqid 2196 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 223 | 90 | fmpttd 5717 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌)) |
| 224 | 92 | feq3d 5396 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌) ↔ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺))) |
| 225 | 223, 224 | mpbid 147 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺)) |
| 226 | 85, 222, 17, 18, 21, 225 | gsumfzcl 13131 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝐺)) |
| 227 | 226, 92 | eleqtrrd 2276 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) |
| 228 | | eqid 2196 |
. . . . . . 7
⊢
(1r‘𝑌) = (1r‘𝑌) |
| 229 | 26, 114, 228 | ringridm 13580 |
. . . . . 6
⊢ ((𝑌 ∈ Ring ∧ (𝐺 Σg
(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
| 230 | 22, 227, 229 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
| 231 | | nnuz 9637 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 232 | 20, 231 | eleqtrdi 2289 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
(ℤ≥‘1)) |
| 233 | 97, 99 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℤ) |
| 234 | 28, 233 | ffvelcdmd 5698 |
. . . . . . . 8
⊢ (𝜑 → (𝐿‘𝑄) ∈ (Base‘𝑌)) |
| 235 | 234, 92 | eleqtrd 2275 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘𝑄) ∈ (Base‘𝐺)) |
| 236 | | eqid 2196 |
. . . . . . . 8
⊢
(.g‘𝐺) = (.g‘𝐺) |
| 237 | 85, 236 | gsumfzconst 13471 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈
(ℤ≥‘1) ∧ (𝐿‘𝑄) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) = (((((𝑃 − 1) / 2) − 1) +
1)(.g‘𝐺)(𝐿‘𝑄))) |
| 238 | 17, 232, 235, 237 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) = (((((𝑃 − 1) / 2) − 1) +
1)(.g‘𝐺)(𝐿‘𝑄))) |
| 239 | 20 | nncnd 9004 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℂ) |
| 240 | | 1cnd 8042 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
| 241 | 239, 240 | npcand 8341 |
. . . . . . 7
⊢ (𝜑 → ((((𝑃 − 1) / 2) − 1) + 1) = ((𝑃 − 1) /
2)) |
| 242 | 241 | oveq1d 5937 |
. . . . . 6
⊢ (𝜑 → (((((𝑃 − 1) / 2) − 1) +
1)(.g‘𝐺)(𝐿‘𝑄)) = (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄))) |
| 243 | 20 | nnnn0d 9302 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ0) |
| 244 | | zringring 14149 |
. . . . . . . . . 10
⊢
ℤring ∈ Ring |
| 245 | 32, 1 | mgpbasg 13482 |
. . . . . . . . . 10
⊢
(ℤring ∈ Ring → ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ))) |
| 246 | 244, 245 | ax-mp 5 |
. . . . . . . . 9
⊢ ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ)) |
| 247 | | eqid 2196 |
. . . . . . . . 9
⊢
(.g‘((mulGrp‘ℂfld)
↾s ℤ)) =
(.g‘((mulGrp‘ℂfld) ↾s
ℤ)) |
| 248 | 246, 247,
236 | mhmmulg 13293 |
. . . . . . . 8
⊢ ((𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺) ∧ ((𝑃 − 1) / 2) ∈
ℕ0 ∧ 𝑄
∈ ℤ) → (𝐿‘(((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄))) |
| 249 | 34, 243, 233, 248 | syl3anc 1249 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘(((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄))) |
| 250 | 51 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → ℤ ∈
(SubMnd‘(mulGrp‘ℂfld))) |
| 251 | | eqid 2196 |
. . . . . . . . . . 11
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
| 252 | 251, 54, 247 | submmulg 13296 |
. . . . . . . . . 10
⊢ ((ℤ
∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈
ℕ0 ∧ 𝑄
∈ ℤ) → (((𝑃
− 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) |
| 253 | 250, 243,
233, 252 | syl3anc 1249 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑃 − 1) /
2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) |
| 254 | 233 | zcnd 9449 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 255 | | cnfldexp 14133 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈
ℕ0) → (((𝑃 − 1) /
2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2))) |
| 256 | 254, 243,
255 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑃 − 1) /
2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2))) |
| 257 | 253, 256 | eqtr3d 2231 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄) = (𝑄↑((𝑃 − 1) / 2))) |
| 258 | 257 | fveq2d 5562 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘(((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
| 259 | 249, 258 | eqtr3d 2231 |
. . . . . 6
⊢ (𝜑 → (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
| 260 | 238, 242,
259 | 3eqtrd 2233 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
| 261 | 221, 230,
260 | 3eqtr3d 2237 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
| 262 | | subrgsubg 13783 |
. . . . . . . . . 10
⊢ (ℤ
∈ (SubRing‘ℂfld) → ℤ ∈
(SubGrp‘ℂfld)) |
| 263 | 49, 262 | ax-mp 5 |
. . . . . . . . 9
⊢ ℤ
∈ (SubGrp‘ℂfld) |
| 264 | | subgsubm 13326 |
. . . . . . . . 9
⊢ (ℤ
∈ (SubGrp‘ℂfld) → ℤ ∈
(SubMnd‘ℂfld)) |
| 265 | 263, 264 | mp1i 10 |
. . . . . . . 8
⊢ (𝜑 → ℤ ∈
(SubMnd‘ℂfld)) |
| 266 | 79 | fmpttd 5717 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))):(1...((𝑃 − 1) /
2))⟶ℤ) |
| 267 | | df-zring 14147 |
. . . . . . . 8
⊢
ℤring = (ℂfld ↾s
ℤ) |
| 268 | 122, 265,
266, 267 | gsumsubm 13126 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
| 269 | 79 | zcnd 9449 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈
ℂ) |
| 270 | 18, 21, 269 | gsumfzfsum 14144 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
| 271 | 268, 270 | eqtr3d 2231 |
. . . . . 6
⊢ (𝜑 → (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
| 272 | 271 | oveq2d 5938 |
. . . . 5
⊢ (𝜑 →
(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
| 273 | 272 | fveq2d 5562 |
. . . 4
⊢ (𝜑 → (𝐿‘(-1↑(ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
| 274 | 84, 261, 273 | 3eqtr3d 2237 |
. . 3
⊢ (𝜑 → (𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
| 275 | 65 | nnnn0d 9302 |
. . . 4
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
| 276 | | zexpcl 10646 |
. . . . 5
⊢ ((𝑄 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈
ℕ0) → (𝑄↑((𝑃 − 1) / 2)) ∈
ℤ) |
| 277 | 233, 243,
276 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℤ) |
| 278 | 122, 79 | fsumzcl 11567 |
. . . . 5
⊢ (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) |
| 279 | | m1expcl 10654 |
. . . . 5
⊢
(Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))) ∈ ℤ →
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈
ℤ) |
| 280 | 278, 279 | syl 14 |
. . . 4
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) |
| 281 | 11, 23 | zndvds 14205 |
. . . 4
⊢ ((𝑃 ∈ ℕ0
∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ
∧ (-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℤ)
→ ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
| 282 | 275, 277,
280, 281 | syl3anc 1249 |
. . 3
⊢ (𝜑 → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
| 283 | 274, 282 | mpbid 147 |
. 2
⊢ (𝜑 → 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))))) |
| 284 | | moddvds 11964 |
. . 3
⊢ ((𝑃 ∈ ℕ ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℤ)
→ (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
| 285 | 65, 277, 280, 284 | syl3anc 1249 |
. 2
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
| 286 | 283, 285 | mpbird 167 |
1
⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) |