Step | Hyp | Ref
| Expression |
1 | | zringbas 14084 |
. . . . 5
⊢ ℤ =
(Base‘ℤring) |
2 | | zring0 14088 |
. . . . 5
⊢ 0 =
(0g‘ℤring) |
3 | | zringabl 14082 |
. . . . . 6
⊢
ℤring ∈ Abel |
4 | | ablcmn 13361 |
. . . . . 6
⊢
(ℤring ∈ Abel → ℤring ∈
CMnd) |
5 | 3, 4 | mp1i 10 |
. . . . 5
⊢ (𝜑 → ℤring
∈ CMnd) |
6 | | lgseisen.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
7 | 6 | eldifad 3164 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℙ) |
8 | | prmnn 12248 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
9 | 8 | nnnn0d 9293 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ0) |
10 | 7, 9 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
11 | | lgseisen.7 |
. . . . . . . . 9
⊢ 𝑌 =
(ℤ/nℤ‘𝑃) |
12 | 11 | zncrng 14133 |
. . . . . . . 8
⊢ (𝑃 ∈ ℕ0
→ 𝑌 ∈
CRing) |
13 | 10, 12 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ CRing) |
14 | | lgseisen.8 |
. . . . . . . 8
⊢ 𝐺 = (mulGrp‘𝑌) |
15 | 14 | crngmgp 13500 |
. . . . . . 7
⊢ (𝑌 ∈ CRing → 𝐺 ∈ CMnd) |
16 | 13, 15 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ CMnd) |
17 | 16 | cmnmndd 13378 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ Mnd) |
18 | | 1zzd 9344 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℤ) |
19 | | oddprm 12397 |
. . . . . . 7
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ ((𝑃 − 1) / 2)
∈ ℕ) |
20 | 6, 19 | syl 14 |
. . . . . 6
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ) |
21 | 20 | nnzd 9438 |
. . . . 5
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℤ) |
22 | 13 | crngringd 13505 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ Ring) |
23 | | lgseisen.9 |
. . . . . . . . . 10
⊢ 𝐿 = (ℤRHom‘𝑌) |
24 | 23 | zrhrhm 14111 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring
RingHom 𝑌)) |
25 | 22, 24 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (ℤring RingHom
𝑌)) |
26 | | eqid 2193 |
. . . . . . . . 9
⊢
(Base‘𝑌) =
(Base‘𝑌) |
27 | 1, 26 | rhmf 13659 |
. . . . . . . 8
⊢ (𝐿 ∈ (ℤring
RingHom 𝑌) → 𝐿:ℤ⟶(Base‘𝑌)) |
28 | 25, 27 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐿:ℤ⟶(Base‘𝑌)) |
29 | | m1expcl 10633 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ →
(-1↑𝑘) ∈
ℤ) |
30 | 29 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (-1↑𝑘) ∈
ℤ) |
31 | 28, 30 | cofmpt 5727 |
. . . . . 6
⊢ (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) = (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘)))) |
32 | | zringmpg 14094 |
. . . . . . . . 9
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
(mulGrp‘ℤring) |
33 | 32, 14 | rhmmhm 13655 |
. . . . . . . 8
⊢ (𝐿 ∈ (ℤring
RingHom 𝑌) → 𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺)) |
34 | 25, 33 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺)) |
35 | | neg1cn 9087 |
. . . . . . . . . . 11
⊢ -1 ∈
ℂ |
36 | | neg1ap0 9091 |
. . . . . . . . . . 11
⊢ -1 #
0 |
37 | | eqid 2193 |
. . . . . . . . . . . 12
⊢
(mulGrp‘ℂfld) =
(mulGrp‘ℂfld) |
38 | | eqid 2193 |
. . . . . . . . . . . 12
⊢
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) =
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}) |
39 | 37, 38 | expghmap 14095 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℂ ∧ -1 # 0) → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring GrpHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0}))) |
40 | 35, 36, 39 | mp2an 426 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring GrpHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) |
41 | | ghmmhm 13323 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring GrpHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) → (𝑘 ∈
ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom
((mulGrp‘ℂfld) ↾s {𝑧 ∈ ℂ ∣ 𝑧 # 0}))) |
42 | 40, 41 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) |
43 | | cnring 14058 |
. . . . . . . . . 10
⊢
ℂfld ∈ Ring |
44 | | cnfldui 14077 |
. . . . . . . . . . 11
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} =
(Unit‘ℂfld) |
45 | 44, 37 | unitsubm 13615 |
. . . . . . . . . 10
⊢
(ℂfld ∈ Ring → {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∈
(SubMnd‘(mulGrp‘ℂfld))) |
46 | 43, 45 | ax-mp 5 |
. . . . . . . . 9
⊢ {𝑧 ∈ ℂ ∣ 𝑧 # 0} ∈
(SubMnd‘(mulGrp‘ℂfld)) |
47 | 38 | resmhm2 13060 |
. . . . . . . . 9
⊢ (((𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s {𝑧
∈ ℂ ∣ 𝑧 #
0})) ∧ {𝑧 ∈
ℂ ∣ 𝑧 # 0}
∈ (SubMnd‘(mulGrp‘ℂfld))) → (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom
(mulGrp‘ℂfld))) |
48 | 42, 46, 47 | mp2an 426 |
. . . . . . . 8
⊢ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom
(mulGrp‘ℂfld)) |
49 | | zsubrg 14069 |
. . . . . . . . . 10
⊢ ℤ
∈ (SubRing‘ℂfld) |
50 | 37 | subrgsubm 13730 |
. . . . . . . . . 10
⊢ (ℤ
∈ (SubRing‘ℂfld) → ℤ ∈
(SubMnd‘(mulGrp‘ℂfld))) |
51 | 49, 50 | ax-mp 5 |
. . . . . . . . 9
⊢ ℤ
∈ (SubMnd‘(mulGrp‘ℂfld)) |
52 | 30 | fmpttd 5713 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)):ℤ⟶ℤ) |
53 | 52 | frnd 5413 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ⊆
ℤ) |
54 | | eqid 2193 |
. . . . . . . . . 10
⊢
((mulGrp‘ℂfld) ↾s ℤ) =
((mulGrp‘ℂfld) ↾s
ℤ) |
55 | 54 | resmhm2b 13061 |
. . . . . . . . 9
⊢ ((ℤ
∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ran (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ⊆
ℤ) → ((𝑘 ∈
ℤ ↦ (-1↑𝑘)) ∈ (ℤring MndHom
(mulGrp‘ℂfld)) ↔ (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ)))) |
56 | 51, 53, 55 | sylancr 414 |
. . . . . . . 8
⊢ (𝜑 → ((𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring MndHom (mulGrp‘ℂfld)) ↔
(𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ)))) |
57 | 48, 56 | mpbii 148 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ ℤ ↦ (-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ))) |
58 | | mhmco 13062 |
. . . . . . 7
⊢ ((𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺) ∧ (𝑘 ∈ ℤ ↦
(-1↑𝑘)) ∈
(ℤring MndHom ((mulGrp‘ℂfld)
↾s ℤ))) → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈
(ℤring MndHom 𝐺)) |
59 | 34, 57, 58 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (𝐿 ∘ (𝑘 ∈ ℤ ↦ (-1↑𝑘))) ∈
(ℤring MndHom 𝐺)) |
60 | 31, 59 | eqeltrrd 2271 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ ℤ ↦ (𝐿‘(-1↑𝑘))) ∈ (ℤring MndHom
𝐺)) |
61 | | lgseisen.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
62 | 61 | gausslemma2dlem0a 15165 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ ℕ) |
63 | 62 | nnzd 9438 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℤ) |
64 | 63 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ) |
65 | 6 | gausslemma2dlem0a 15165 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
66 | 65 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ) |
67 | | znq 9689 |
. . . . . . . 8
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ) |
68 | 64, 66, 67 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 / 𝑃) ∈ ℚ) |
69 | | 2nn 9143 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
70 | | elfznn 10120 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ) |
71 | 70 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℕ) |
72 | | nnmulcl 9003 |
. . . . . . . . . 10
⊢ ((2
∈ ℕ ∧ 𝑥
∈ ℕ) → (2 · 𝑥) ∈ ℕ) |
73 | 69, 71, 72 | sylancr 414 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℕ) |
74 | 73 | nnzd 9438 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℤ) |
75 | | zq 9691 |
. . . . . . . 8
⊢ ((2
· 𝑥) ∈ ℤ
→ (2 · 𝑥)
∈ ℚ) |
76 | 74, 75 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℚ) |
77 | | qmulcl 9702 |
. . . . . . 7
⊢ (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑥) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) |
78 | 68, 76, 77 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 / 𝑃) · (2 · 𝑥)) ∈ ℚ) |
79 | 78 | flqcld 10346 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈
ℤ) |
80 | | oveq2 5926 |
. . . . . 6
⊢ (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (-1↑𝑘) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
81 | 80 | fveq2d 5558 |
. . . . 5
⊢ (𝑘 = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
82 | | oveq2 5926 |
. . . . . 6
⊢ (𝑘 = (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (-1↑𝑘) =
(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) |
83 | 82 | fveq2d 5558 |
. . . . 5
⊢ (𝑘 = (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) → (𝐿‘(-1↑𝑘)) = (𝐿‘(-1↑(ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
84 | 1, 2, 5, 17, 18, 21, 60, 79, 81, 83 | gsumfzmhm2 13414 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑(ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
85 | | eqid 2193 |
. . . . . . . 8
⊢
(Base‘𝐺) =
(Base‘𝐺) |
86 | | eqid 2193 |
. . . . . . . 8
⊢
(+g‘𝐺) = (+g‘𝐺) |
87 | 28 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿:ℤ⟶(Base‘𝑌)) |
88 | | m1expcl 10633 |
. . . . . . . . . . 11
⊢
((⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥))) ∈ ℤ →
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈
ℤ) |
89 | 79, 88 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈
ℤ) |
90 | 87, 89 | ffvelcdmd 5694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝑌)) |
91 | 14, 26 | mgpbasg 13422 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ CRing →
(Base‘𝑌) =
(Base‘𝐺)) |
92 | 13, 91 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑌) = (Base‘𝐺)) |
93 | 92 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (Base‘𝑌) = (Base‘𝐺)) |
94 | 90, 93 | eleqtrd 2272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ∈ (Base‘𝐺)) |
95 | | neg1z 9349 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℤ |
96 | | lgseisen.4 |
. . . . . . . . . . . . 13
⊢ 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃) |
97 | 61 | eldifad 3164 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑄 ∈ ℙ) |
98 | 97 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℙ) |
99 | | prmz 12249 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
100 | 98, 99 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℤ) |
101 | 100, 74 | zmulcld 9445 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℤ) |
102 | 7 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℙ) |
103 | 102, 8 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℕ) |
104 | 101, 103 | zmodcld 10416 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈
ℕ0) |
105 | 96, 104 | eqeltrid 2280 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈
ℕ0) |
106 | | zexpcl 10625 |
. . . . . . . . . . . 12
⊢ ((-1
∈ ℤ ∧ 𝑅
∈ ℕ0) → (-1↑𝑅) ∈ ℤ) |
107 | 95, 105, 106 | sylancr 414 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈
ℤ) |
108 | 107, 100 | zmulcld 9445 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑅) · 𝑄) ∈ ℤ) |
109 | 87, 108 | ffvelcdmd 5694 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝑌)) |
110 | 109, 93 | eleqtrd 2272 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑𝑅) · 𝑄)) ∈ (Base‘𝐺)) |
111 | | eqid 2193 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
112 | | eqid 2193 |
. . . . . . . 8
⊢ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) |
113 | 85, 86, 16, 18, 21, 94, 110, 111, 112 | gsumfzmptfidmadd2 13410 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
114 | | eqid 2193 |
. . . . . . . . . . . 12
⊢
(.r‘𝑌) = (.r‘𝑌) |
115 | 14, 114 | mgpplusgg 13420 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ CRing →
(.r‘𝑌) =
(+g‘𝐺)) |
116 | 13, 115 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (.r‘𝑌) = (+g‘𝐺)) |
117 | 116 | ofeqd 6132 |
. . . . . . . . 9
⊢ (𝜑 →
∘𝑓 (.r‘𝑌) = ∘𝑓
(+g‘𝐺)) |
118 | 117 | oveqd 5935 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) |
119 | 118 | oveq2d 5934 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(+g‘𝐺)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
120 | 116 | oveqd 5935 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(+g‘𝐺)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
121 | 113, 119,
120 | 3eqtr4d 2236 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))))) |
122 | 18, 21 | fzfigd 10502 |
. . . . . . . . 9
⊢ (𝜑 → (1...((𝑃 − 1) / 2)) ∈
Fin) |
123 | | eqidd 2194 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) |
124 | | eqidd 2194 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) |
125 | 122, 90, 109, 123, 124 | offval2 6146 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄))))) |
126 | 25 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝐿 ∈ (ℤring RingHom
𝑌)) |
127 | | zringmulr 14087 |
. . . . . . . . . . . 12
⊢ ·
= (.r‘ℤring) |
128 | 1, 127, 114 | rhmmul 13660 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ (ℤring
RingHom 𝑌) ∧
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈ ℤ ∧
((-1↑𝑅) · 𝑄) ∈ ℤ) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) |
129 | 126, 89, 108, 128 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) |
130 | 62 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℕ) |
131 | 130, 73 | nnmulcld 9031 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℕ) |
132 | | nnq 9698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑄 · (2 · 𝑥)) ∈ ℕ → (𝑄 · (2 · 𝑥)) ∈
ℚ) |
133 | 131, 132 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℚ) |
134 | | nnq 9698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℚ) |
135 | 65, 134 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑃 ∈ ℚ) |
136 | 135 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℚ) |
137 | 66 | nngt0d 9026 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 0 < 𝑃) |
138 | | modqval 10395 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑄 · (2 · 𝑥)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 <
𝑃) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))))) |
139 | 133, 136,
137, 138 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))))) |
140 | 96, 139 | eqtrid 2238 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))))) |
141 | 100 | zcnd 9440 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑄 ∈ ℂ) |
142 | 73 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 · 𝑥) ∈
ℂ) |
143 | 103 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℂ) |
144 | 103 | nnap0d 9028 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 # 0) |
145 | 141, 142,
143, 144 | div23apd 8847 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑥))) |
146 | 145 | fveq2d 5558 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 ·
(2 · 𝑥)) / 𝑃)) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
147 | 146 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃))) = (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
148 | 147 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 · (2 · 𝑥)) / 𝑃)))) = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
149 | 140, 148 | eqtrd 2226 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 = ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
150 | 149 | oveq2d 5934 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) |
151 | | prmz 12249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
152 | 102, 151 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑃 ∈ ℤ) |
153 | 152, 79 | zmulcld 9445 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) |
154 | 153 | zcnd 9440 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℂ) |
155 | 101 | zcnd 9440 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) ∈ ℂ) |
156 | 154, 155 | pncan3d 8333 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + ((𝑄 · (2 · 𝑥)) − (𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (𝑄 · (2 · 𝑥))) |
157 | | 2cnd 9055 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℂ) |
158 | 71 | nncnd 8996 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑥 ∈ ℂ) |
159 | 141, 157,
158 | mul12d 8171 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · (2 · 𝑥)) = (2 · (𝑄 · 𝑥))) |
160 | 150, 156,
159 | 3eqtrd 2230 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅) = (2 · (𝑄 · 𝑥))) |
161 | 160 | oveq2d 5934 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = (-1↑(2 · (𝑄 · 𝑥)))) |
162 | 35 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 ∈
ℂ) |
163 | 36 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → -1 #
0) |
164 | 105 | nn0zd 9437 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 𝑅 ∈ ℤ) |
165 | | expaddzap 10654 |
. . . . . . . . . . . . . . . 16
⊢ (((-1
∈ ℂ ∧ -1 # 0) ∧ ((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ ∧ 𝑅 ∈ ℤ)) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅))) |
166 | 162, 163,
153, 164, 165 | syl22anc 1250 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅))) |
167 | | expmulzap 10656 |
. . . . . . . . . . . . . . . . . 18
⊢ (((-1
∈ ℂ ∧ -1 # 0) ∧ (𝑃 ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ)) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
168 | 162, 163,
152, 79, 167 | syl22anc 1250 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
169 | | 1cnd 8035 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 1 ∈
ℂ) |
170 | | eldifsni 3747 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) |
171 | 6, 170 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑃 ≠ 2) |
172 | 171 | necomd 2450 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 2 ≠ 𝑃) |
173 | 172 | neneqd 2385 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ¬ 2 = 𝑃) |
174 | 173 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 = 𝑃) |
175 | | 2z 9345 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 2 ∈
ℤ |
176 | | uzid 9606 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
177 | 175, 176 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
(ℤ≥‘2) |
178 | | dvdsprm 12275 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
179 | 177, 102,
178 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
180 | 174, 179 | mtbird 674 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ¬ 2 ∥
𝑃) |
181 | | oexpneg 12018 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((1
∈ ℂ ∧ 𝑃
∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (-1↑𝑃) = -(1↑𝑃)) |
182 | 169, 103,
180, 181 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -(1↑𝑃)) |
183 | | 1exp 10639 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃 ∈ ℤ →
(1↑𝑃) =
1) |
184 | 152, 183 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑𝑃) = 1) |
185 | 184 | negeqd 8214 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → -(1↑𝑃) = -1) |
186 | 182, 185 | eqtrd 2226 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑃) = -1) |
187 | 186 | oveq1d 5933 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑𝑃)↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
188 | 168, 187 | eqtrd 2226 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
189 | 188 | oveq1d 5933 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((-1↑(𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) · (-1↑𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅))) |
190 | 166, 189 | eqtrd 2226 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑((𝑃 · (⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) + 𝑅)) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅))) |
191 | | nnmulcl 9003 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (𝑄 · 𝑥) ∈ ℕ) |
192 | 62, 70, 191 | syl2an 289 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℕ) |
193 | 192 | nnnn0d 9293 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈
ℕ0) |
194 | | 2nn0 9257 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℕ0 |
195 | 194 | a1i 9 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → 2 ∈
ℕ0) |
196 | 162, 193,
195 | expmuld 10747 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2
· (𝑄 · 𝑥))) = ((-1↑2)↑(𝑄 · 𝑥))) |
197 | | neg1sqe1 10705 |
. . . . . . . . . . . . . . . . 17
⊢
(-1↑2) = 1 |
198 | 197 | oveq1i 5928 |
. . . . . . . . . . . . . . . 16
⊢
((-1↑2)↑(𝑄
· 𝑥)) =
(1↑(𝑄 · 𝑥)) |
199 | 192 | nnzd 9438 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝑄 · 𝑥) ∈ ℤ) |
200 | | 1exp 10639 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄 · 𝑥) ∈ ℤ → (1↑(𝑄 · 𝑥)) = 1) |
201 | 199, 200 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1↑(𝑄 · 𝑥)) = 1) |
202 | 198, 201 | eqtrid 2238 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
((-1↑2)↑(𝑄
· 𝑥)) =
1) |
203 | 196, 202 | eqtrd 2226 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑(2
· (𝑄 · 𝑥))) = 1) |
204 | 161, 190,
203 | 3eqtr3d 2234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) = 1) |
205 | 204 | oveq1d 5933 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = (1 · 𝑄)) |
206 | 89 | zcnd 9440 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(-1↑(⌊‘((𝑄
/ 𝑃) · (2 ·
𝑥)))) ∈
ℂ) |
207 | 107 | zcnd 9440 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (-1↑𝑅) ∈
ℂ) |
208 | 206, 207,
141 | mulassd 8043 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · (-1↑𝑅)) · 𝑄) = ((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) |
209 | 141 | mullidd 8037 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (1 · 𝑄) = 𝑄) |
210 | 205, 208,
209 | 3eqtr3d 2234 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄)) = 𝑄) |
211 | 210 | fveq2d 5558 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → (𝐿‘((-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) · ((-1↑𝑅) · 𝑄))) = (𝐿‘𝑄)) |
212 | 129, 211 | eqtr3d 2228 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) → ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄))) = (𝐿‘𝑄)) |
213 | 212 | mpteq2dva 4119 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))(.r‘𝑌)(𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) |
214 | 125, 213 | eqtrd 2226 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) |
215 | 214 | oveq2d 5934 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) ∘𝑓
(.r‘𝑌)(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄)))) |
216 | | lgseisen.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
217 | | lgseisen.5 |
. . . . . . . 8
⊢ 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)) |
218 | | lgseisen.6 |
. . . . . . . 8
⊢ 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃) |
219 | 6, 61, 216, 96, 217, 218, 11, 14, 23 | lgseisenlem3 15188 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄)))) = (1r‘𝑌)) |
220 | 219 | oveq2d 5934 |
. . . . . 6
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘((-1↑𝑅) · 𝑄))))) = ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌))) |
221 | 121, 215,
220 | 3eqtr3rd 2235 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄)))) |
222 | | eqid 2193 |
. . . . . . . 8
⊢
(0g‘𝐺) = (0g‘𝐺) |
223 | 90 | fmpttd 5713 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌)) |
224 | 92 | feq3d 5392 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝑌) ↔ (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺))) |
225 | 223, 224 | mpbid 147 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))):(1...((𝑃 − 1) / 2))⟶(Base‘𝐺)) |
226 | 85, 222, 17, 18, 21, 225 | gsumfzcl 13071 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝐺)) |
227 | 226, 92 | eleqtrrd 2273 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) |
228 | | eqid 2193 |
. . . . . . 7
⊢
(1r‘𝑌) = (1r‘𝑌) |
229 | 26, 114, 228 | ringridm 13520 |
. . . . . 6
⊢ ((𝑌 ∈ Ring ∧ (𝐺 Σg
(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) ∈ (Base‘𝑌)) → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
230 | 22, 227, 229 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → ((𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))(.r‘𝑌)(1r‘𝑌)) = (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))))) |
231 | | nnuz 9628 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
232 | 20, 231 | eleqtrdi 2286 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
(ℤ≥‘1)) |
233 | 97, 99 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℤ) |
234 | 28, 233 | ffvelcdmd 5694 |
. . . . . . . 8
⊢ (𝜑 → (𝐿‘𝑄) ∈ (Base‘𝑌)) |
235 | 234, 92 | eleqtrd 2272 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘𝑄) ∈ (Base‘𝐺)) |
236 | | eqid 2193 |
. . . . . . . 8
⊢
(.g‘𝐺) = (.g‘𝐺) |
237 | 85, 236 | gsumfzconst 13411 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ ((𝑃 − 1) / 2) ∈
(ℤ≥‘1) ∧ (𝐿‘𝑄) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) = (((((𝑃 − 1) / 2) − 1) +
1)(.g‘𝐺)(𝐿‘𝑄))) |
238 | 17, 232, 235, 237 | syl3anc 1249 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) = (((((𝑃 − 1) / 2) − 1) +
1)(.g‘𝐺)(𝐿‘𝑄))) |
239 | 20 | nncnd 8996 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℂ) |
240 | | 1cnd 8035 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℂ) |
241 | 239, 240 | npcand 8334 |
. . . . . . 7
⊢ (𝜑 → ((((𝑃 − 1) / 2) − 1) + 1) = ((𝑃 − 1) /
2)) |
242 | 241 | oveq1d 5933 |
. . . . . 6
⊢ (𝜑 → (((((𝑃 − 1) / 2) − 1) +
1)(.g‘𝐺)(𝐿‘𝑄)) = (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄))) |
243 | 20 | nnnn0d 9293 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃 − 1) / 2) ∈
ℕ0) |
244 | | zringring 14081 |
. . . . . . . . . 10
⊢
ℤring ∈ Ring |
245 | 32, 1 | mgpbasg 13422 |
. . . . . . . . . 10
⊢
(ℤring ∈ Ring → ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ))) |
246 | 244, 245 | ax-mp 5 |
. . . . . . . . 9
⊢ ℤ =
(Base‘((mulGrp‘ℂfld) ↾s
ℤ)) |
247 | | eqid 2193 |
. . . . . . . . 9
⊢
(.g‘((mulGrp‘ℂfld)
↾s ℤ)) =
(.g‘((mulGrp‘ℂfld) ↾s
ℤ)) |
248 | 246, 247,
236 | mhmmulg 13233 |
. . . . . . . 8
⊢ ((𝐿 ∈
(((mulGrp‘ℂfld) ↾s ℤ) MndHom
𝐺) ∧ ((𝑃 − 1) / 2) ∈
ℕ0 ∧ 𝑄
∈ ℤ) → (𝐿‘(((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄))) |
249 | 34, 243, 233, 248 | syl3anc 1249 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘(((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) = (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄))) |
250 | 51 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → ℤ ∈
(SubMnd‘(mulGrp‘ℂfld))) |
251 | | eqid 2193 |
. . . . . . . . . . 11
⊢
(.g‘(mulGrp‘ℂfld)) =
(.g‘(mulGrp‘ℂfld)) |
252 | 251, 54, 247 | submmulg 13236 |
. . . . . . . . . 10
⊢ ((ℤ
∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ ((𝑃 − 1) / 2) ∈
ℕ0 ∧ 𝑄
∈ ℤ) → (((𝑃
− 1) / 2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) |
253 | 250, 243,
233, 252 | syl3anc 1249 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑃 − 1) /
2)(.g‘(mulGrp‘ℂfld))𝑄) = (((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) |
254 | 233 | zcnd 9440 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ ℂ) |
255 | | cnfldexp 14065 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ ℂ ∧ ((𝑃 − 1) / 2) ∈
ℕ0) → (((𝑃 − 1) /
2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2))) |
256 | 254, 243,
255 | syl2anc 411 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑃 − 1) /
2)(.g‘(mulGrp‘ℂfld))𝑄) = (𝑄↑((𝑃 − 1) / 2))) |
257 | 253, 256 | eqtr3d 2228 |
. . . . . . . 8
⊢ (𝜑 → (((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄) = (𝑄↑((𝑃 − 1) / 2))) |
258 | 257 | fveq2d 5558 |
. . . . . . 7
⊢ (𝜑 → (𝐿‘(((𝑃 − 1) /
2)(.g‘((mulGrp‘ℂfld)
↾s ℤ))𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
259 | 249, 258 | eqtr3d 2228 |
. . . . . 6
⊢ (𝜑 → (((𝑃 − 1) / 2)(.g‘𝐺)(𝐿‘𝑄)) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
260 | 238, 242,
259 | 3eqtrd 2230 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘𝑄))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
261 | 221, 230,
260 | 3eqtr3d 2234 |
. . . 4
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ (𝐿‘(-1↑(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(𝑄↑((𝑃 − 1) / 2)))) |
262 | | subrgsubg 13723 |
. . . . . . . . . 10
⊢ (ℤ
∈ (SubRing‘ℂfld) → ℤ ∈
(SubGrp‘ℂfld)) |
263 | 49, 262 | ax-mp 5 |
. . . . . . . . 9
⊢ ℤ
∈ (SubGrp‘ℂfld) |
264 | | subgsubm 13266 |
. . . . . . . . 9
⊢ (ℤ
∈ (SubGrp‘ℂfld) → ℤ ∈
(SubMnd‘ℂfld)) |
265 | 263, 264 | mp1i 10 |
. . . . . . . 8
⊢ (𝜑 → ℤ ∈
(SubMnd‘ℂfld)) |
266 | 79 | fmpttd 5713 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))):(1...((𝑃 − 1) /
2))⟶ℤ) |
267 | | df-zring 14079 |
. . . . . . . 8
⊢
ℤring = (ℂfld ↾s
ℤ) |
268 | 122, 265,
266, 267 | gsumsubm 13066 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
269 | 79 | zcnd 9440 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈
ℂ) |
270 | 18, 21, 269 | gsumfzfsum 14076 |
. . . . . . 7
⊢ (𝜑 → (ℂfld
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
271 | 268, 270 | eqtr3d 2228 |
. . . . . 6
⊢ (𝜑 → (ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) = Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) |
272 | 271 | oveq2d 5934 |
. . . . 5
⊢ (𝜑 →
(-1↑(ℤring Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) = (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) |
273 | 272 | fveq2d 5558 |
. . . 4
⊢ (𝜑 → (𝐿‘(-1↑(ℤring
Σg (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦
(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
274 | 84, 261, 273 | 3eqtr3d 2234 |
. . 3
⊢ (𝜑 → (𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))))) |
275 | 65 | nnnn0d 9293 |
. . . 4
⊢ (𝜑 → 𝑃 ∈
ℕ0) |
276 | | zexpcl 10625 |
. . . . 5
⊢ ((𝑄 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈
ℕ0) → (𝑄↑((𝑃 − 1) / 2)) ∈
ℤ) |
277 | 233, 243,
276 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (𝑄↑((𝑃 − 1) / 2)) ∈
ℤ) |
278 | 122, 79 | fsumzcl 11545 |
. . . . 5
⊢ (𝜑 → Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))) ∈ ℤ) |
279 | | m1expcl 10633 |
. . . . 5
⊢
(Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))) ∈ ℤ →
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈
ℤ) |
280 | 278, 279 | syl 14 |
. . . 4
⊢ (𝜑 → (-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) ∈ ℤ) |
281 | 11, 23 | zndvds 14137 |
. . . 4
⊢ ((𝑃 ∈ ℕ0
∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ
∧ (-1↑Σ𝑥
∈ (1...((𝑃 − 1)
/ 2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℤ)
→ ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
282 | 275, 277,
280, 281 | syl3anc 1249 |
. . 3
⊢ (𝜑 → ((𝐿‘(𝑄↑((𝑃 − 1) / 2))) = (𝐿‘(-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥))))) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
283 | 274, 282 | mpbid 147 |
. 2
⊢ (𝜑 → 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))))) |
284 | | moddvds 11942 |
. . 3
⊢ ((𝑃 ∈ ℕ ∧ (𝑄↑((𝑃 − 1) / 2)) ∈ ℤ ∧
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥)))) ∈ ℤ)
→ (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
285 | 65, 277, 280, 284 | syl3anc 1249 |
. 2
⊢ (𝜑 → (((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃) ↔ 𝑃 ∥ ((𝑄↑((𝑃 − 1) / 2)) −
(-1↑Σ𝑥 ∈
(1...((𝑃 − 1) /
2))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑥))))))) |
286 | 283, 285 | mpbird 167 |
1
⊢ (𝜑 → ((𝑄↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑Σ𝑥 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑥)))) mod 𝑃)) |