ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub4 GIF version

Theorem ablsub4 13519
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsub4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 13495 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
213ad2ant1 1020 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Grp)
3 simp2l 1025 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
4 simp2r 1026 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
5 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . . 5 + = (+g𝐺)
75, 6grpcl 13210 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1249 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
9 simp3l 1027 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
10 simp3r 1028 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6grpcl 13210 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
122, 9, 10, 11syl3anc 1249 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑊) ∈ 𝐵)
13 eqid 2196 . . . 4 (invg𝐺) = (invg𝐺)
14 ablsubadd.m . . . 4 = (-g𝐺)
155, 6, 13, 14grpsubval 13248 . . 3 (((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
168, 12, 15syl2anc 411 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
17 ablcmn 13497 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
18173ad2ant1 1020 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ CMnd)
19 simp2 1000 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋𝐵𝑌𝐵))
205, 13grpinvcl 13250 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
212, 9, 20syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
225, 13grpinvcl 13250 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑊𝐵) → ((invg𝐺)‘𝑊) ∈ 𝐵)
232, 10, 22syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑊) ∈ 𝐵)
245, 6cmn4 13511 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (((invg𝐺)‘𝑍) ∈ 𝐵 ∧ ((invg𝐺)‘𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
2518, 19, 21, 23, 24syl112anc 1253 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
26 simp1 999 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Abel)
275, 6, 13ablinvadd 13516 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑍𝐵𝑊𝐵) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2826, 9, 10, 27syl3anc 1249 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2928oveq2d 5941 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))))
305, 6, 13, 14grpsubval 13248 . . . . 5 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
313, 9, 30syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
325, 6, 13, 14grpsubval 13248 . . . . 5 ((𝑌𝐵𝑊𝐵) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
334, 10, 32syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
3431, 33oveq12d 5943 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (𝑌 𝑊)) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
3525, 29, 343eqtr4d 2239 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 𝑍) + (𝑌 𝑊)))
3616, 35eqtrd 2229 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Grpcgrp 13202  invgcminusg 13203  -gcsg 13204  CMndccmn 13490  Abelcabl 13491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9008  df-2 9066  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-sbg 13207  df-cmn 13492  df-abl 13493
This theorem is referenced by:  abladdsub4  13520  ablpnpcan  13526
  Copyright terms: Public domain W3C validator