ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablsub4 GIF version

Theorem ablsub4 13836
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
ablsubadd.b 𝐵 = (Base‘𝐺)
ablsubadd.p + = (+g𝐺)
ablsubadd.m = (-g𝐺)
Assertion
Ref Expression
ablsub4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))

Proof of Theorem ablsub4
StepHypRef Expression
1 ablgrp 13812 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
213ad2ant1 1042 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Grp)
3 simp2l 1047 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑋𝐵)
4 simp2r 1048 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑌𝐵)
5 ablsubadd.b . . . . 5 𝐵 = (Base‘𝐺)
6 ablsubadd.p . . . . 5 + = (+g𝐺)
75, 6grpcl 13527 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
82, 3, 4, 7syl3anc 1271 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 + 𝑌) ∈ 𝐵)
9 simp3l 1049 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑍𝐵)
10 simp3r 1050 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝑊𝐵)
115, 6grpcl 13527 . . . 4 ((𝐺 ∈ Grp ∧ 𝑍𝐵𝑊𝐵) → (𝑍 + 𝑊) ∈ 𝐵)
122, 9, 10, 11syl3anc 1271 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑍 + 𝑊) ∈ 𝐵)
13 eqid 2229 . . . 4 (invg𝐺) = (invg𝐺)
14 ablsubadd.m . . . 4 = (-g𝐺)
155, 6, 13, 14grpsubval 13565 . . 3 (((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
168, 12, 15syl2anc 411 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))))
17 ablcmn 13814 . . . . 5 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
18173ad2ant1 1042 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ CMnd)
19 simp2 1022 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋𝐵𝑌𝐵))
205, 13grpinvcl 13567 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑍𝐵) → ((invg𝐺)‘𝑍) ∈ 𝐵)
212, 9, 20syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑍) ∈ 𝐵)
225, 13grpinvcl 13567 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑊𝐵) → ((invg𝐺)‘𝑊) ∈ 𝐵)
232, 10, 22syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘𝑊) ∈ 𝐵)
245, 6cmn4 13828 . . . 4 ((𝐺 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵) ∧ (((invg𝐺)‘𝑍) ∈ 𝐵 ∧ ((invg𝐺)‘𝑊) ∈ 𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
2518, 19, 21, 23, 24syl112anc 1275 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
26 simp1 1021 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → 𝐺 ∈ Abel)
275, 6, 13ablinvadd 13833 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑍𝐵𝑊𝐵) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2826, 9, 10, 27syl3anc 1271 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((invg𝐺)‘(𝑍 + 𝑊)) = (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊)))
2928oveq2d 6010 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 + 𝑌) + (((invg𝐺)‘𝑍) + ((invg𝐺)‘𝑊))))
305, 6, 13, 14grpsubval 13565 . . . . 5 ((𝑋𝐵𝑍𝐵) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
313, 9, 30syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑋 𝑍) = (𝑋 + ((invg𝐺)‘𝑍)))
325, 6, 13, 14grpsubval 13565 . . . . 5 ((𝑌𝐵𝑊𝐵) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
334, 10, 32syl2anc 411 . . . 4 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → (𝑌 𝑊) = (𝑌 + ((invg𝐺)‘𝑊)))
3431, 33oveq12d 6012 . . 3 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 𝑍) + (𝑌 𝑊)) = ((𝑋 + ((invg𝐺)‘𝑍)) + (𝑌 + ((invg𝐺)‘𝑊))))
3525, 29, 343eqtr4d 2272 . 2 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) + ((invg𝐺)‘(𝑍 + 𝑊))) = ((𝑋 𝑍) + (𝑌 𝑊)))
3616, 35eqtrd 2262 1 ((𝐺 ∈ Abel ∧ (𝑋𝐵𝑌𝐵) ∧ (𝑍𝐵𝑊𝐵)) → ((𝑋 + 𝑌) (𝑍 + 𝑊)) = ((𝑋 𝑍) + (𝑌 𝑊)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  cfv 5314  (class class class)co 5994  Basecbs 13018  +gcplusg 13096  Grpcgrp 13519  invgcminusg 13520  -gcsg 13521  CMndccmn 13807  Abelcabl 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1re 8081  ax-addrcl 8084
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-inn 9099  df-2 9157  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-sbg 13524  df-cmn 13809  df-abl 13810
This theorem is referenced by:  abladdsub4  13837  ablpnpcan  13843
  Copyright terms: Public domain W3C validator