| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmabl | GIF version | ||
| Description: The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmabl.p | ⊢ + = (+g‘𝐺) |
| ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| ghmabl.3 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Ref | Expression |
|---|---|
| ghmabl | ⊢ (𝜑 → 𝐻 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 2 | ghmabl.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | ghmabl.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
| 4 | ghmabl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | ghmabl.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
| 6 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 7 | ghmabl.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 8 | ablgrp 13567 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | ghmgrp 13396 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 11 | ablcmn 13569 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 12 | 7, 11 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 13 | 2, 3, 4, 5, 1, 6, 12 | ghmcmn 13605 | . 2 ⊢ (𝜑 → 𝐻 ∈ CMnd) |
| 14 | isabl 13566 | . 2 ⊢ (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd)) | |
| 15 | 10, 13, 14 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐻 ∈ Abel) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 –onto→wfo 5268 ‘cfv 5270 (class class class)co 5943 Basecbs 12774 +gcplusg 12851 Grpcgrp 13274 CMndccmn 13562 Abelcabl 13563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-cmn 13564 df-abl 13565 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |