ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmabl GIF version

Theorem ghmabl 13779
Description: The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmabl.3 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ghmabl (𝜑𝐻 ∈ Abel)
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmabl
StepHypRef Expression
1 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmabl.x . . 3 𝑋 = (Base‘𝐺)
3 ghmabl.y . . 3 𝑌 = (Base‘𝐻)
4 ghmabl.p . . 3 + = (+g𝐺)
5 ghmabl.q . . 3 = (+g𝐻)
6 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmabl.3 . . . 4 (𝜑𝐺 ∈ Abel)
8 ablgrp 13740 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
97, 8syl 14 . . 3 (𝜑𝐺 ∈ Grp)
101, 2, 3, 4, 5, 6, 9ghmgrp 13569 . 2 (𝜑𝐻 ∈ Grp)
11 ablcmn 13742 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
127, 11syl 14 . . 3 (𝜑𝐺 ∈ CMnd)
132, 3, 4, 5, 1, 6, 12ghmcmn 13778 . 2 (𝜑𝐻 ∈ CMnd)
14 isabl 13739 . 2 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd))
1510, 13, 14sylanbrc 417 1 (𝜑𝐻 ∈ Abel)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 981   = wceq 1373  wcel 2178  ontowfo 5288  cfv 5290  (class class class)co 5967  Basecbs 12947  +gcplusg 13024  Grpcgrp 13447  CMndccmn 13735  Abelcabl 13736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-cmn 13737  df-abl 13738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator