![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ghmabl | GIF version |
Description: The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
ghmabl.p | ⊢ + = (+g‘𝐺) |
ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
ghmabl.3 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
Ref | Expression |
---|---|
ghmabl | ⊢ (𝜑 → 𝐻 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
2 | ghmabl.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
3 | ghmabl.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
4 | ghmabl.p | . . 3 ⊢ + = (+g‘𝐺) | |
5 | ghmabl.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
6 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
7 | ghmabl.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
8 | ablgrp 13245 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
10 | 1, 2, 3, 4, 5, 6, 9 | ghmgrp 13075 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
11 | ablcmn 13247 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
12 | 7, 11 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
13 | 2, 3, 4, 5, 1, 6, 12 | ghmcmn 13282 | . 2 ⊢ (𝜑 → 𝐻 ∈ CMnd) |
14 | isabl 13244 | . 2 ⊢ (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd)) | |
15 | 10, 13, 14 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐻 ∈ Abel) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 –onto→wfo 5233 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 +gcplusg 12592 Grpcgrp 12960 CMndccmn 13240 Abelcabl 13241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-cnex 7933 ax-resscn 7934 ax-1re 7936 ax-addrcl 7939 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-inn 8951 df-2 9009 df-ndx 12518 df-slot 12519 df-base 12521 df-plusg 12605 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-cmn 13242 df-abl 13243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |