ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmabl GIF version

Theorem ghmabl 13401
Description: The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmabl.3 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ghmabl (𝜑𝐻 ∈ Abel)
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmabl
StepHypRef Expression
1 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
2 ghmabl.x . . 3 𝑋 = (Base‘𝐺)
3 ghmabl.y . . 3 𝑌 = (Base‘𝐻)
4 ghmabl.p . . 3 + = (+g𝐺)
5 ghmabl.q . . 3 = (+g𝐻)
6 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
7 ghmabl.3 . . . 4 (𝜑𝐺 ∈ Abel)
8 ablgrp 13362 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
97, 8syl 14 . . 3 (𝜑𝐺 ∈ Grp)
101, 2, 3, 4, 5, 6, 9ghmgrp 13191 . 2 (𝜑𝐻 ∈ Grp)
11 ablcmn 13364 . . . 4 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
127, 11syl 14 . . 3 (𝜑𝐺 ∈ CMnd)
132, 3, 4, 5, 1, 6, 12ghmcmn 13400 . 2 (𝜑𝐻 ∈ CMnd)
14 isabl 13361 . 2 (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd))
1510, 13, 14sylanbrc 417 1 (𝜑𝐻 ∈ Abel)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  ontowfo 5253  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  Grpcgrp 13075  CMndccmn 13357  Abelcabl 13358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-cmn 13359  df-abl 13360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator