| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmabl | GIF version | ||
| Description: The image of an abelian group 𝐺 under a group homomorphism 𝐹 is an abelian group. (Contributed by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmabl.p | ⊢ + = (+g‘𝐺) |
| ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| ghmabl.3 | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| Ref | Expression |
|---|---|
| ghmabl | ⊢ (𝜑 → 𝐻 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 2 | ghmabl.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | ghmabl.y | . . 3 ⊢ 𝑌 = (Base‘𝐻) | |
| 4 | ghmabl.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 5 | ghmabl.q | . . 3 ⊢ ⨣ = (+g‘𝐻) | |
| 6 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 7 | ghmabl.3 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 8 | ablgrp 13826 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) |
| 10 | 1, 2, 3, 4, 5, 6, 9 | ghmgrp 13655 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 11 | ablcmn 13828 | . . . 4 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) | |
| 12 | 7, 11 | syl 14 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 13 | 2, 3, 4, 5, 1, 6, 12 | ghmcmn 13864 | . 2 ⊢ (𝜑 → 𝐻 ∈ CMnd) |
| 14 | isabl 13825 | . 2 ⊢ (𝐻 ∈ Abel ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ CMnd)) | |
| 15 | 10, 13, 14 | sylanbrc 417 | 1 ⊢ (𝜑 → 𝐻 ∈ Abel) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 –onto→wfo 5316 ‘cfv 5318 (class class class)co 6001 Basecbs 13032 +gcplusg 13110 Grpcgrp 13533 CMndccmn 13821 Abelcabl 13822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-cmn 13823 df-abl 13824 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |