Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add12i | GIF version |
Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
add.1 | ⊢ 𝐴 ∈ ℂ |
add.2 | ⊢ 𝐵 ∈ ℂ |
add.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
add12i | ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | add.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | add.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | add12 8050 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1326 | 1 ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1342 ∈ wcel 2135 (class class class)co 5839 ℂcc 7745 + caddc 7750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 ax-addcom 7847 ax-addass 7849 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-rex 2448 df-v 2726 df-un 3118 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-br 3980 df-iota 5150 df-fv 5193 df-ov 5842 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |