Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add12i | GIF version |
Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
Ref | Expression |
---|---|
add.1 | ⊢ 𝐴 ∈ ℂ |
add.2 | ⊢ 𝐵 ∈ ℂ |
add.3 | ⊢ 𝐶 ∈ ℂ |
Ref | Expression |
---|---|
add12i | ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | add.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | add.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | add12 8077 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) | |
5 | 1, 2, 3, 4 | mp3an 1332 | 1 ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-addcom 7874 ax-addass 7876 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |