ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumsplit GIF version

Theorem isumsplit 11466
Description: Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
Hypotheses
Ref Expression
isumsplit.1 𝑍 = (β„€β‰₯β€˜π‘€)
isumsplit.2 π‘Š = (β„€β‰₯β€˜π‘)
isumsplit.3 (πœ‘ β†’ 𝑁 ∈ 𝑍)
isumsplit.4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = 𝐴)
isumsplit.5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 𝐴 ∈ β„‚)
isumsplit.6 (πœ‘ β†’ seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumsplit (πœ‘ β†’ Ξ£π‘˜ ∈ 𝑍 𝐴 = (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + Ξ£π‘˜ ∈ π‘Š 𝐴))
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝑀   πœ‘,π‘˜   π‘˜,𝑍   π‘˜,𝑁   π‘˜,π‘Š
Allowed substitution hint:   𝐴(π‘˜)

Proof of Theorem isumsplit
Dummy variables 𝑗 π‘š π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2 𝑍 = (β„€β‰₯β€˜π‘€)
2 isumsplit.3 . . . 4 (πœ‘ β†’ 𝑁 ∈ 𝑍)
32, 1eleqtrdi 2268 . . 3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
4 eluzel2 9504 . . 3 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
53, 4syl 14 . 2 (πœ‘ β†’ 𝑀 ∈ β„€)
6 isumsplit.4 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = 𝐴)
7 isumsplit.5 . 2 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ 𝐴 ∈ β„‚)
8 isumsplit.2 . . 3 π‘Š = (β„€β‰₯β€˜π‘)
9 eluzelz 9508 . . . 4 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑁 ∈ β„€)
103, 9syl 14 . . 3 (πœ‘ β†’ 𝑁 ∈ β„€)
11 uzss 9519 . . . . . . . 8 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (β„€β‰₯β€˜π‘) βŠ† (β„€β‰₯β€˜π‘€))
123, 11syl 14 . . . . . . 7 (πœ‘ β†’ (β„€β‰₯β€˜π‘) βŠ† (β„€β‰₯β€˜π‘€))
1312, 8, 13sstr4g 3196 . . . . . 6 (πœ‘ β†’ π‘Š βŠ† 𝑍)
1413sselda 3153 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ π‘˜ ∈ 𝑍)
1514, 6syldan 282 . . . 4 ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ (πΉβ€˜π‘˜) = 𝐴)
1614, 7syldan 282 . . . 4 ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ 𝐴 ∈ β„‚)
17 isumsplit.6 . . . . 5 (πœ‘ β†’ seq𝑀( + , 𝐹) ∈ dom ⇝ )
186, 7eqeltrd 2252 . . . . . 6 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
191, 2, 18iserex 11314 . . . . 5 (πœ‘ β†’ (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2017, 19mpbid 147 . . . 4 (πœ‘ β†’ seq𝑁( + , 𝐹) ∈ dom ⇝ )
218, 10, 15, 16, 20isumclim2 11397 . . 3 (πœ‘ β†’ seq𝑁( + , 𝐹) ⇝ Ξ£π‘˜ ∈ π‘Š 𝐴)
22 peano2zm 9262 . . . . . 6 (𝑁 ∈ β„€ β†’ (𝑁 βˆ’ 1) ∈ β„€)
2310, 22syl 14 . . . . 5 (πœ‘ β†’ (𝑁 βˆ’ 1) ∈ β„€)
245, 23fzfigd 10399 . . . 4 (πœ‘ β†’ (𝑀...(𝑁 βˆ’ 1)) ∈ Fin)
25 elfzuz 9989 . . . . . 6 (π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1)) β†’ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
2625, 1eleqtrrdi 2269 . . . . 5 (π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1)) β†’ π‘˜ ∈ 𝑍)
2726, 7sylan2 286 . . . 4 ((πœ‘ ∧ π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))) β†’ 𝐴 ∈ β„‚)
2824, 27fsumcl 11375 . . 3 (πœ‘ β†’ Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 ∈ β„‚)
2914, 18syldan 282 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ π‘Š) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
308, 10, 29serf 10442 . . . 4 (πœ‘ β†’ seq𝑁( + , 𝐹):π‘ŠβŸΆβ„‚)
3130ffvelcdmda 5643 . . 3 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (seq𝑁( + , 𝐹)β€˜π‘—) ∈ β„‚)
325zred 9346 . . . . . . . . . . . 12 (πœ‘ β†’ 𝑀 ∈ ℝ)
3332ltm1d 8860 . . . . . . . . . . 11 (πœ‘ β†’ (𝑀 βˆ’ 1) < 𝑀)
34 peano2zm 9262 . . . . . . . . . . . . 13 (𝑀 ∈ β„€ β†’ (𝑀 βˆ’ 1) ∈ β„€)
355, 34syl 14 . . . . . . . . . . . 12 (πœ‘ β†’ (𝑀 βˆ’ 1) ∈ β„€)
36 fzn 10010 . . . . . . . . . . . 12 ((𝑀 ∈ β„€ ∧ (𝑀 βˆ’ 1) ∈ β„€) β†’ ((𝑀 βˆ’ 1) < 𝑀 ↔ (𝑀...(𝑀 βˆ’ 1)) = βˆ…))
375, 35, 36syl2anc 411 . . . . . . . . . . 11 (πœ‘ β†’ ((𝑀 βˆ’ 1) < 𝑀 ↔ (𝑀...(𝑀 βˆ’ 1)) = βˆ…))
3833, 37mpbid 147 . . . . . . . . . 10 (πœ‘ β†’ (𝑀...(𝑀 βˆ’ 1)) = βˆ…)
3938sumeq1d 11341 . . . . . . . . 9 (πœ‘ β†’ Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴 = Ξ£π‘˜ ∈ βˆ… 𝐴)
4039adantr 276 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴 = Ξ£π‘˜ ∈ βˆ… 𝐴)
41 sum0 11363 . . . . . . . 8 Ξ£π‘˜ ∈ βˆ… 𝐴 = 0
4240, 41eqtrdi 2224 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴 = 0)
4342oveq1d 5880 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴 + (seq𝑀( + , 𝐹)β€˜π‘—)) = (0 + (seq𝑀( + , 𝐹)β€˜π‘—)))
4413sselda 3153 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ 𝑗 ∈ 𝑍)
451, 5, 18serf 10442 . . . . . . . . 9 (πœ‘ β†’ seq𝑀( + , 𝐹):π‘βŸΆβ„‚)
4645ffvelcdmda 5643 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ 𝑍) β†’ (seq𝑀( + , 𝐹)β€˜π‘—) ∈ β„‚)
4744, 46syldan 282 . . . . . . 7 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (seq𝑀( + , 𝐹)β€˜π‘—) ∈ β„‚)
4847addid2d 8081 . . . . . 6 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (0 + (seq𝑀( + , 𝐹)β€˜π‘—)) = (seq𝑀( + , 𝐹)β€˜π‘—))
4943, 48eqtr2d 2209 . . . . 5 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (seq𝑀( + , 𝐹)β€˜π‘—) = (Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴 + (seq𝑀( + , 𝐹)β€˜π‘—)))
50 oveq1 5872 . . . . . . . . 9 (𝑁 = 𝑀 β†’ (𝑁 βˆ’ 1) = (𝑀 βˆ’ 1))
5150oveq2d 5881 . . . . . . . 8 (𝑁 = 𝑀 β†’ (𝑀...(𝑁 βˆ’ 1)) = (𝑀...(𝑀 βˆ’ 1)))
5251sumeq1d 11341 . . . . . . 7 (𝑁 = 𝑀 β†’ Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 = Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴)
53 seqeq1 10416 . . . . . . . 8 (𝑁 = 𝑀 β†’ seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
5453fveq1d 5509 . . . . . . 7 (𝑁 = 𝑀 β†’ (seq𝑁( + , 𝐹)β€˜π‘—) = (seq𝑀( + , 𝐹)β€˜π‘—))
5552, 54oveq12d 5883 . . . . . 6 (𝑁 = 𝑀 β†’ (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + (seq𝑁( + , 𝐹)β€˜π‘—)) = (Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴 + (seq𝑀( + , 𝐹)β€˜π‘—)))
5655eqeq2d 2187 . . . . 5 (𝑁 = 𝑀 β†’ ((seq𝑀( + , 𝐹)β€˜π‘—) = (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + (seq𝑁( + , 𝐹)β€˜π‘—)) ↔ (seq𝑀( + , 𝐹)β€˜π‘—) = (Ξ£π‘˜ ∈ (𝑀...(𝑀 βˆ’ 1))𝐴 + (seq𝑀( + , 𝐹)β€˜π‘—))))
5749, 56syl5ibrcom 157 . . . 4 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (𝑁 = 𝑀 β†’ (seq𝑀( + , 𝐹)β€˜π‘—) = (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + (seq𝑁( + , 𝐹)β€˜π‘—))))
58 addcl 7911 . . . . . . . 8 ((π‘˜ ∈ β„‚ ∧ π‘š ∈ β„‚) β†’ (π‘˜ + π‘š) ∈ β„‚)
5958adantl 277 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) ∧ (π‘˜ ∈ β„‚ ∧ π‘š ∈ β„‚)) β†’ (π‘˜ + π‘š) ∈ β„‚)
60 addass 7916 . . . . . . . 8 ((π‘˜ ∈ β„‚ ∧ π‘š ∈ β„‚ ∧ π‘₯ ∈ β„‚) β†’ ((π‘˜ + π‘š) + π‘₯) = (π‘˜ + (π‘š + π‘₯)))
6160adantl 277 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) ∧ (π‘˜ ∈ β„‚ ∧ π‘š ∈ β„‚ ∧ π‘₯ ∈ β„‚)) β†’ ((π‘˜ + π‘š) + π‘₯) = (π‘˜ + (π‘š + π‘₯)))
62 simplr 528 . . . . . . . 8 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ 𝑗 ∈ π‘Š)
63 simpll 527 . . . . . . . . . . 11 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ πœ‘)
6410zcnd 9347 . . . . . . . . . . . . 13 (πœ‘ β†’ 𝑁 ∈ β„‚)
65 ax-1cn 7879 . . . . . . . . . . . . 13 1 ∈ β„‚
66 npcan 8140 . . . . . . . . . . . . 13 ((𝑁 ∈ β„‚ ∧ 1 ∈ β„‚) β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
6764, 65, 66sylancl 413 . . . . . . . . . . . 12 (πœ‘ β†’ ((𝑁 βˆ’ 1) + 1) = 𝑁)
6867eqcomd 2181 . . . . . . . . . . 11 (πœ‘ β†’ 𝑁 = ((𝑁 βˆ’ 1) + 1))
6963, 68syl 14 . . . . . . . . . 10 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ 𝑁 = ((𝑁 βˆ’ 1) + 1))
7069fveq2d 5511 . . . . . . . . 9 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ (β„€β‰₯β€˜π‘) = (β„€β‰₯β€˜((𝑁 βˆ’ 1) + 1)))
718, 70eqtrid 2220 . . . . . . . 8 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ π‘Š = (β„€β‰₯β€˜((𝑁 βˆ’ 1) + 1)))
7262, 71eleqtrd 2254 . . . . . . 7 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ 𝑗 ∈ (β„€β‰₯β€˜((𝑁 βˆ’ 1) + 1)))
735adantr 276 . . . . . . . 8 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ 𝑀 ∈ β„€)
74 eluzp1m1 9522 . . . . . . . 8 ((𝑀 ∈ β„€ ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ (𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜π‘€))
7573, 74sylan 283 . . . . . . 7 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ (𝑁 βˆ’ 1) ∈ (β„€β‰₯β€˜π‘€))
761eleq2i 2242 . . . . . . . . . 10 (π‘˜ ∈ 𝑍 ↔ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
7776, 6sylan2br 288 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) = 𝐴)
7863, 77sylan 283 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) = 𝐴)
7976, 7sylan2br 288 . . . . . . . . 9 ((πœ‘ ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ 𝐴 ∈ β„‚)
8063, 79sylan 283 . . . . . . . 8 ((((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ 𝐴 ∈ β„‚)
8178, 80eqeltrd 2252 . . . . . . 7 ((((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘€)) β†’ (πΉβ€˜π‘˜) ∈ β„‚)
8259, 61, 72, 75, 81seq3split 10447 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ (seq𝑀( + , 𝐹)β€˜π‘—) = ((seq𝑀( + , 𝐹)β€˜(𝑁 βˆ’ 1)) + (seq((𝑁 βˆ’ 1) + 1)( + , 𝐹)β€˜π‘—)))
8378, 75, 80fsum3ser 11372 . . . . . . 7 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 = (seq𝑀( + , 𝐹)β€˜(𝑁 βˆ’ 1)))
8469seqeq1d 10419 . . . . . . . 8 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ seq𝑁( + , 𝐹) = seq((𝑁 βˆ’ 1) + 1)( + , 𝐹))
8584fveq1d 5509 . . . . . . 7 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ (seq𝑁( + , 𝐹)β€˜π‘—) = (seq((𝑁 βˆ’ 1) + 1)( + , 𝐹)β€˜π‘—))
8683, 85oveq12d 5883 . . . . . 6 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + (seq𝑁( + , 𝐹)β€˜π‘—)) = ((seq𝑀( + , 𝐹)β€˜(𝑁 βˆ’ 1)) + (seq((𝑁 βˆ’ 1) + 1)( + , 𝐹)β€˜π‘—)))
8782, 86eqtr4d 2211 . . . . 5 (((πœ‘ ∧ 𝑗 ∈ π‘Š) ∧ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))) β†’ (seq𝑀( + , 𝐹)β€˜π‘—) = (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + (seq𝑁( + , 𝐹)β€˜π‘—)))
8887ex 115 . . . 4 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1)) β†’ (seq𝑀( + , 𝐹)β€˜π‘—) = (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + (seq𝑁( + , 𝐹)β€˜π‘—))))
89 uzp1 9532 . . . . . 6 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ (𝑁 = 𝑀 ∨ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))))
903, 89syl 14 . . . . 5 (πœ‘ β†’ (𝑁 = 𝑀 ∨ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))))
9190adantr 276 . . . 4 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (𝑁 = 𝑀 ∨ 𝑁 ∈ (β„€β‰₯β€˜(𝑀 + 1))))
9257, 88, 91mpjaod 718 . . 3 ((πœ‘ ∧ 𝑗 ∈ π‘Š) β†’ (seq𝑀( + , 𝐹)β€˜π‘—) = (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + (seq𝑁( + , 𝐹)β€˜π‘—)))
938, 10, 21, 28, 17, 31, 92climaddc2 11305 . 2 (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + Ξ£π‘˜ ∈ π‘Š 𝐴))
941, 5, 6, 7, 93isumclim 11396 1 (πœ‘ β†’ Ξ£π‘˜ ∈ 𝑍 𝐴 = (Ξ£π‘˜ ∈ (𝑀...(𝑁 βˆ’ 1))𝐴 + Ξ£π‘˜ ∈ π‘Š 𝐴))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∨ wo 708   ∧ w3a 978   = wceq 1353   ∈ wcel 2146   βŠ† wss 3127  βˆ…c0 3420   class class class wbr 3998  dom cdm 4620  β€˜cfv 5208  (class class class)co 5865  β„‚cc 7784  0cc0 7786  1c1 7787   + caddc 7789   < clt 7966   βˆ’ cmin 8102  β„€cz 9224  β„€β‰₯cuz 9499  ...cfz 9977  seqcseq 10413   ⇝ cli 11253  Ξ£csu 11328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-isom 5217  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-frec 6382  df-1o 6407  df-oadd 6411  df-er 6525  df-en 6731  df-dom 6732  df-fin 6733  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-2 8949  df-3 8950  df-4 8951  df-n0 9148  df-z 9225  df-uz 9500  df-q 9591  df-rp 9623  df-fz 9978  df-fzo 10111  df-seqfrec 10414  df-exp 10488  df-ihash 10722  df-cj 10818  df-re 10819  df-im 10820  df-rsqrt 10974  df-abs 10975  df-clim 11254  df-sumdc 11329
This theorem is referenced by:  isum1p  11467  geolim2  11487  mertenslem2  11511  mertensabs  11512  effsumlt  11667  eirraplem  11751  trilpolemeq1  14271  trilpolemlt1  14272  nconstwlpolemgt0  14294
  Copyright terms: Public domain W3C validator