ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumsplit GIF version

Theorem isumsplit 11426
Description: Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
Hypotheses
Ref Expression
isumsplit.1 𝑍 = (ℤ𝑀)
isumsplit.2 𝑊 = (ℤ𝑁)
isumsplit.3 (𝜑𝑁𝑍)
isumsplit.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumsplit.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumsplit.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumsplit (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝑘,𝑁   𝑘,𝑊
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumsplit
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2 𝑍 = (ℤ𝑀)
2 isumsplit.3 . . . 4 (𝜑𝑁𝑍)
32, 1eleqtrdi 2257 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 9465 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 14 . 2 (𝜑𝑀 ∈ ℤ)
6 isumsplit.4 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
7 isumsplit.5 . 2 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
8 isumsplit.2 . . 3 𝑊 = (ℤ𝑁)
9 eluzelz 9469 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
103, 9syl 14 . . 3 (𝜑𝑁 ∈ ℤ)
11 uzss 9480 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
123, 11syl 14 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
1312, 8, 13sstr4g 3183 . . . . . 6 (𝜑𝑊𝑍)
1413sselda 3140 . . . . 5 ((𝜑𝑘𝑊) → 𝑘𝑍)
1514, 6syldan 280 . . . 4 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
1614, 7syldan 280 . . . 4 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
17 isumsplit.6 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
186, 7eqeltrd 2241 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191, 2, 18iserex 11274 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2017, 19mpbid 146 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
218, 10, 15, 16, 20isumclim2 11357 . . 3 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
22 peano2zm 9223 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2310, 22syl 14 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℤ)
245, 23fzfigd 10360 . . . 4 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
25 elfzuz 9950 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2625, 1eleqtrrdi 2258 . . . . 5 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
2726, 7sylan2 284 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
2824, 27fsumcl 11335 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
2914, 18syldan 280 . . . . 5 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
308, 10, 29serf 10403 . . . 4 (𝜑 → seq𝑁( + , 𝐹):𝑊⟶ℂ)
3130ffvelrnda 5617 . . 3 ((𝜑𝑗𝑊) → (seq𝑁( + , 𝐹)‘𝑗) ∈ ℂ)
325zred 9307 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
3332ltm1d 8821 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
34 peano2zm 9223 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
355, 34syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℤ)
36 fzn 9971 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
375, 35, 36syl2anc 409 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3833, 37mpbid 146 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3938sumeq1d 11301 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
4039adantr 274 . . . . . . . 8 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
41 sum0 11323 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐴 = 0
4240, 41eqtrdi 2213 . . . . . . 7 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = 0)
4342oveq1d 5854 . . . . . 6 ((𝜑𝑗𝑊) → (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)) = (0 + (seq𝑀( + , 𝐹)‘𝑗)))
4413sselda 3140 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑗𝑍)
451, 5, 18serf 10403 . . . . . . . . 9 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
4645ffvelrnda 5617 . . . . . . . 8 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4744, 46syldan 280 . . . . . . 7 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4847addid2d 8042 . . . . . 6 ((𝜑𝑗𝑊) → (0 + (seq𝑀( + , 𝐹)‘𝑗)) = (seq𝑀( + , 𝐹)‘𝑗))
4943, 48eqtr2d 2198 . . . . 5 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
50 oveq1 5846 . . . . . . . . 9 (𝑁 = 𝑀 → (𝑁 − 1) = (𝑀 − 1))
5150oveq2d 5855 . . . . . . . 8 (𝑁 = 𝑀 → (𝑀...(𝑁 − 1)) = (𝑀...(𝑀 − 1)))
5251sumeq1d 11301 . . . . . . 7 (𝑁 = 𝑀 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴)
53 seqeq1 10377 . . . . . . . 8 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
5453fveq1d 5485 . . . . . . 7 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
5552, 54oveq12d 5857 . . . . . 6 (𝑁 = 𝑀 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
5655eqeq2d 2176 . . . . 5 (𝑁 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) ↔ (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗))))
5749, 56syl5ibrcom 156 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
58 addcl 7872 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
5958adantl 275 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
60 addass 7877 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
6160adantl 275 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
62 simplr 520 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗𝑊)
63 simpll 519 . . . . . . . . . . 11 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝜑)
6410zcnd 9308 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
65 ax-1cn 7840 . . . . . . . . . . . . 13 1 ∈ ℂ
66 npcan 8101 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6764, 65, 66sylancl 410 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6867eqcomd 2170 . . . . . . . . . . 11 (𝜑𝑁 = ((𝑁 − 1) + 1))
6963, 68syl 14 . . . . . . . . . 10 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 = ((𝑁 − 1) + 1))
7069fveq2d 5487 . . . . . . . . 9 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (ℤ𝑁) = (ℤ‘((𝑁 − 1) + 1)))
718, 70syl5eq 2209 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑊 = (ℤ‘((𝑁 − 1) + 1)))
7262, 71eleqtrd 2243 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ (ℤ‘((𝑁 − 1) + 1)))
735adantr 274 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑀 ∈ ℤ)
74 eluzp1m1 9483 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
7573, 74sylan 281 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
761eleq2i 2231 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
7776, 6sylan2br 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7863, 77sylan 281 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7976, 7sylan2br 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
8063, 79sylan 281 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
8178, 80eqeltrd 2241 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
8259, 61, 72, 75, 81seq3split 10408 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
8378, 75, 80fsum3ser 11332 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (seq𝑀( + , 𝐹)‘(𝑁 − 1)))
8469seqeq1d 10380 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
8584fveq1d 5485 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑁( + , 𝐹)‘𝑗) = (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗))
8683, 85oveq12d 5857 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
8782, 86eqtr4d 2200 . . . . 5 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
8887ex 114 . . . 4 ((𝜑𝑗𝑊) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
89 uzp1 9493 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
903, 89syl 14 . . . . 5 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
9190adantr 274 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
9257, 88, 91mpjaod 708 . . 3 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
938, 10, 21, 28, 17, 31, 92climaddc2 11265 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
941, 5, 6, 7, 93isumclim 11356 1 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698  w3a 967   = wceq 1342  wcel 2135  wss 3114  c0 3407   class class class wbr 3979  dom cdm 4601  cfv 5185  (class class class)co 5839  cc 7745  0cc0 7747  1c1 7748   + caddc 7750   < clt 7927  cmin 8063  cz 9185  cuz 9460  ...cfz 9938  seqcseq 10374  cli 11213  Σcsu 11288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4094  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-setind 4511  ax-iinf 4562  ax-cnex 7838  ax-resscn 7839  ax-1cn 7840  ax-1re 7841  ax-icn 7842  ax-addcl 7843  ax-addrcl 7844  ax-mulcl 7845  ax-mulrcl 7846  ax-addcom 7847  ax-mulcom 7848  ax-addass 7849  ax-mulass 7850  ax-distr 7851  ax-i2m1 7852  ax-0lt1 7853  ax-1rid 7854  ax-0id 7855  ax-rnegex 7856  ax-precex 7857  ax-cnre 7858  ax-pre-ltirr 7859  ax-pre-ltwlin 7860  ax-pre-lttrn 7861  ax-pre-apti 7862  ax-pre-ltadd 7863  ax-pre-mulgt0 7864  ax-pre-mulext 7865  ax-arch 7866  ax-caucvg 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-if 3519  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-iun 3865  df-br 3980  df-opab 4041  df-mpt 4042  df-tr 4078  df-id 4268  df-po 4271  df-iso 4272  df-iord 4341  df-on 4343  df-ilim 4344  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-isom 5194  df-riota 5795  df-ov 5842  df-oprab 5843  df-mpo 5844  df-1st 6103  df-2nd 6104  df-recs 6267  df-irdg 6332  df-frec 6353  df-1o 6378  df-oadd 6382  df-er 6495  df-en 6701  df-dom 6702  df-fin 6703  df-pnf 7929  df-mnf 7930  df-xr 7931  df-ltxr 7932  df-le 7933  df-sub 8065  df-neg 8066  df-reap 8467  df-ap 8474  df-div 8563  df-inn 8852  df-2 8910  df-3 8911  df-4 8912  df-n0 9109  df-z 9186  df-uz 9461  df-q 9552  df-rp 9584  df-fz 9939  df-fzo 10072  df-seqfrec 10375  df-exp 10449  df-ihash 10683  df-cj 10778  df-re 10779  df-im 10780  df-rsqrt 10934  df-abs 10935  df-clim 11214  df-sumdc 11289
This theorem is referenced by:  isum1p  11427  geolim2  11447  mertenslem2  11471  mertensabs  11472  effsumlt  11627  eirraplem  11711  trilpolemeq1  13812  trilpolemlt1  13813  nconstwlpolemgt0  13835
  Copyright terms: Public domain W3C validator