Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumsplit GIF version

Theorem isumsplit 11200
 Description: Split off the first 𝑁 terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 21-Oct-2022.)
Hypotheses
Ref Expression
isumsplit.1 𝑍 = (ℤ𝑀)
isumsplit.2 𝑊 = (ℤ𝑁)
isumsplit.3 (𝜑𝑁𝑍)
isumsplit.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumsplit.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumsplit.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumsplit (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍   𝑘,𝑁   𝑘,𝑊
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumsplit
Dummy variables 𝑗 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumsplit.1 . 2 𝑍 = (ℤ𝑀)
2 isumsplit.3 . . . 4 (𝜑𝑁𝑍)
32, 1syl6eleq 2208 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 9280 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 14 . 2 (𝜑𝑀 ∈ ℤ)
6 isumsplit.4 . 2 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
7 isumsplit.5 . 2 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
8 isumsplit.2 . . 3 𝑊 = (ℤ𝑁)
9 eluzelz 9284 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
103, 9syl 14 . . 3 (𝜑𝑁 ∈ ℤ)
11 uzss 9295 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
123, 11syl 14 . . . . . . 7 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
1312, 8, 13sstr4g 3108 . . . . . 6 (𝜑𝑊𝑍)
1413sselda 3065 . . . . 5 ((𝜑𝑘𝑊) → 𝑘𝑍)
1514, 6syldan 278 . . . 4 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
1614, 7syldan 278 . . . 4 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
17 isumsplit.6 . . . . 5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
186, 7eqeltrd 2192 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
191, 2, 18iserex 11048 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2017, 19mpbid 146 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
218, 10, 15, 16, 20isumclim2 11131 . . 3 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
22 peano2zm 9043 . . . . . 6 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2310, 22syl 14 . . . . 5 (𝜑 → (𝑁 − 1) ∈ ℤ)
245, 23fzfigd 10144 . . . 4 (𝜑 → (𝑀...(𝑁 − 1)) ∈ Fin)
25 elfzuz 9742 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2625, 1syl6eleqr 2209 . . . . 5 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘𝑍)
2726, 7sylan2 282 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ∈ ℂ)
2824, 27fsumcl 11109 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 ∈ ℂ)
2914, 18syldan 278 . . . . 5 ((𝜑𝑘𝑊) → (𝐹𝑘) ∈ ℂ)
308, 10, 29serf 10187 . . . 4 (𝜑 → seq𝑁( + , 𝐹):𝑊⟶ℂ)
3130ffvelrnda 5521 . . 3 ((𝜑𝑗𝑊) → (seq𝑁( + , 𝐹)‘𝑗) ∈ ℂ)
325zred 9124 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
3332ltm1d 8647 . . . . . . . . . . 11 (𝜑 → (𝑀 − 1) < 𝑀)
34 peano2zm 9043 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
355, 34syl 14 . . . . . . . . . . . 12 (𝜑 → (𝑀 − 1) ∈ ℤ)
36 fzn 9762 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
375, 35, 36syl2anc 406 . . . . . . . . . . 11 (𝜑 → ((𝑀 − 1) < 𝑀 ↔ (𝑀...(𝑀 − 1)) = ∅))
3833, 37mpbid 146 . . . . . . . . . 10 (𝜑 → (𝑀...(𝑀 − 1)) = ∅)
3938sumeq1d 11075 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
4039adantr 272 . . . . . . . 8 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = Σ𝑘 ∈ ∅ 𝐴)
41 sum0 11097 . . . . . . . 8 Σ𝑘 ∈ ∅ 𝐴 = 0
4240, 41syl6eq 2164 . . . . . . 7 ((𝜑𝑗𝑊) → Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 = 0)
4342oveq1d 5755 . . . . . 6 ((𝜑𝑗𝑊) → (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)) = (0 + (seq𝑀( + , 𝐹)‘𝑗)))
4413sselda 3065 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑗𝑍)
451, 5, 18serf 10187 . . . . . . . . 9 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
4645ffvelrnda 5521 . . . . . . . 8 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4744, 46syldan 278 . . . . . . 7 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
4847addid2d 7876 . . . . . 6 ((𝜑𝑗𝑊) → (0 + (seq𝑀( + , 𝐹)‘𝑗)) = (seq𝑀( + , 𝐹)‘𝑗))
4943, 48eqtr2d 2149 . . . . 5 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
50 oveq1 5747 . . . . . . . . 9 (𝑁 = 𝑀 → (𝑁 − 1) = (𝑀 − 1))
5150oveq2d 5756 . . . . . . . 8 (𝑁 = 𝑀 → (𝑀...(𝑁 − 1)) = (𝑀...(𝑀 − 1)))
5251sumeq1d 11075 . . . . . . 7 (𝑁 = 𝑀 → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴)
53 seqeq1 10161 . . . . . . . 8 (𝑁 = 𝑀 → seq𝑁( + , 𝐹) = seq𝑀( + , 𝐹))
5453fveq1d 5389 . . . . . . 7 (𝑁 = 𝑀 → (seq𝑁( + , 𝐹)‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗))
5552, 54oveq12d 5758 . . . . . 6 (𝑁 = 𝑀 → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗)))
5655eqeq2d 2127 . . . . 5 (𝑁 = 𝑀 → ((seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) ↔ (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑀 − 1))𝐴 + (seq𝑀( + , 𝐹)‘𝑗))))
5749, 56syl5ibrcom 156 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀 → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
58 addcl 7709 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ) → (𝑘 + 𝑚) ∈ ℂ)
5958adantl 273 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ)) → (𝑘 + 𝑚) ∈ ℂ)
60 addass 7714 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
6160adantl 273 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → ((𝑘 + 𝑚) + 𝑥) = (𝑘 + (𝑚 + 𝑥)))
62 simplr 502 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗𝑊)
63 simpll 501 . . . . . . . . . . 11 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝜑)
6410zcnd 9125 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
65 ax-1cn 7677 . . . . . . . . . . . . 13 1 ∈ ℂ
66 npcan 7935 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6764, 65, 66sylancl 407 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
6867eqcomd 2121 . . . . . . . . . . 11 (𝜑𝑁 = ((𝑁 − 1) + 1))
6963, 68syl 14 . . . . . . . . . 10 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑁 = ((𝑁 − 1) + 1))
7069fveq2d 5391 . . . . . . . . 9 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (ℤ𝑁) = (ℤ‘((𝑁 − 1) + 1)))
718, 70syl5eq 2160 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑊 = (ℤ‘((𝑁 − 1) + 1)))
7262, 71eleqtrd 2194 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → 𝑗 ∈ (ℤ‘((𝑁 − 1) + 1)))
735adantr 272 . . . . . . . 8 ((𝜑𝑗𝑊) → 𝑀 ∈ ℤ)
74 eluzp1m1 9298 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
7573, 74sylan 279 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (𝑁 − 1) ∈ (ℤ𝑀))
761eleq2i 2182 . . . . . . . . . 10 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
7776, 6sylan2br 284 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7863, 77sylan 279 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)
7976, 7sylan2br 284 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
8063, 79sylan 279 . . . . . . . 8 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
8178, 80eqeltrd 2192 . . . . . . 7 ((((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
8259, 61, 72, 75, 81seq3split 10192 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
8378, 75, 80fsum3ser 11106 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 = (seq𝑀( + , 𝐹)‘(𝑁 − 1)))
8469seqeq1d 10164 . . . . . . . 8 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹))
8584fveq1d 5389 . . . . . . 7 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑁( + , 𝐹)‘𝑗) = (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗))
8683, 85oveq12d 5758 . . . . . 6 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)) = ((seq𝑀( + , 𝐹)‘(𝑁 − 1)) + (seq((𝑁 − 1) + 1)( + , 𝐹)‘𝑗)))
8782, 86eqtr4d 2151 . . . . 5 (((𝜑𝑗𝑊) ∧ 𝑁 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
8887ex 114 . . . 4 ((𝜑𝑗𝑊) → (𝑁 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗))))
89 uzp1 9308 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
903, 89syl 14 . . . . 5 (𝜑 → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
9190adantr 272 . . . 4 ((𝜑𝑗𝑊) → (𝑁 = 𝑀𝑁 ∈ (ℤ‘(𝑀 + 1))))
9257, 88, 91mpjaod 690 . . 3 ((𝜑𝑗𝑊) → (seq𝑀( + , 𝐹)‘𝑗) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + (seq𝑁( + , 𝐹)‘𝑗)))
938, 10, 21, 28, 17, 31, 92climaddc2 11039 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
941, 5, 6, 7, 93isumclim 11130 1 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + Σ𝑘𝑊 𝐴))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 680   ∧ w3a 945   = wceq 1314   ∈ wcel 1463   ⊆ wss 3039  ∅c0 3331   class class class wbr 3897  dom cdm 4507  ‘cfv 5091  (class class class)co 5740  ℂcc 7582  0cc0 7584  1c1 7585   + caddc 7587   < clt 7764   − cmin 7897  ℤcz 9005  ℤ≥cuz 9275  ...cfz 9730  seqcseq 10158   ⇝ cli 10987  Σcsu 11062 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704 This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-fz 9731  df-fzo 9860  df-seqfrec 10159  df-exp 10233  df-ihash 10462  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-clim 10988  df-sumdc 11063 This theorem is referenced by:  isum1p  11201  geolim2  11221  mertenslem2  11245  mertensabs  11246  effsumlt  11297  eirraplem  11379  trilpolemeq1  13044  trilpolemlt1  13045
 Copyright terms: Public domain W3C validator