ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncrng GIF version

Theorem cncrng 13720
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.)
Assertion
Ref Expression
cncrng fld ∈ CRing

Proof of Theorem cncrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfldbas 13716 . . . 4 ℂ = (Base‘ℂfld)
21a1i 9 . . 3 (⊤ → ℂ = (Base‘ℂfld))
3 cnfldadd 13717 . . . 4 + = (+g‘ℂfld)
43a1i 9 . . 3 (⊤ → + = (+g‘ℂfld))
5 cnfldmul 13718 . . . 4 · = (.r‘ℂfld)
65a1i 9 . . 3 (⊤ → · = (.r‘ℂfld))
7 addcl 7949 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
8 addass 7954 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
9 0cn 7962 . . . . 5 0 ∈ ℂ
10 addlid 8109 . . . . 5 (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥)
11 negcl 8170 . . . . 5 (𝑥 ∈ ℂ → -𝑥 ∈ ℂ)
12 addcom 8107 . . . . . . 7 ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
1311, 12mpancom 422 . . . . . 6 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥))
14 negid 8217 . . . . . 6 (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0)
1513, 14eqtrd 2220 . . . . 5 (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0)
161, 3, 7, 8, 9, 10, 11, 15isgrpi 12921 . . . 4 fld ∈ Grp
1716a1i 9 . . 3 (⊤ → ℂfld ∈ Grp)
18 mulcl 7951 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
19183adant1 1016 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
20 mulass 7955 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
2120adantl 277 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
22 adddi 7956 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2322adantl 277 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
24 adddir 7961 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
2524adantl 277 . . 3 ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
26 1cnd 7986 . . 3 (⊤ → 1 ∈ ℂ)
27 mullid 7968 . . . 4 (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥)
2827adantl 277 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥)
29 mulrid 7967 . . . 4 (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥)
3029adantl 277 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥)
31 mulcom 7953 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
32313adant1 1016 . . 3 ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥))
332, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32iscrngd 13289 . 2 (⊤ → ℂfld ∈ CRing)
3433mptru 1372 1 fld ∈ CRing
Colors of variables: wff set class
Syntax hints:  w3a 979   = wceq 1363  wtru 1364  wcel 2158  cfv 5228  (class class class)co 5888  cc 7822  0cc0 7824  1c1 7825   + caddc 7827   · cmul 7829  -cneg 8142  Basecbs 12475  +gcplusg 12550  .rcmulr 12551  Grpcgrp 12898  CRingccrg 13244  fldccnfld 13712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-addf 7946  ax-mulf 7947
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-tp 3612  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-5 8994  df-6 8995  df-7 8996  df-8 8997  df-9 8998  df-n0 9190  df-z 9267  df-dec 9398  df-uz 9542  df-fz 10022  df-cj 10864  df-struct 12477  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-plusg 12563  df-mulr 12564  df-starv 12565  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839  df-grp 12901  df-cmn 13122  df-mgp 13171  df-ring 13245  df-cring 13246  df-icnfld 13713
This theorem is referenced by:  cnring  13721  zringcrng  13739  zring0  13747
  Copyright terms: Public domain W3C validator