| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncrng | GIF version | ||
| Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| cncrng | ⊢ ℂfld ∈ CRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 14322 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 3 | cnfldadd 14324 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
| 5 | cnfldmul 14326 | . . . 4 ⊢ · = (.r‘ℂfld) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
| 7 | addcl 8050 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 8 | addass 8055 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 9 | 0cn 8064 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 10 | addlid 8211 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 11 | negcl 8272 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
| 12 | addcom 8209 | . . . . . . 7 ⊢ ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) | |
| 13 | 11, 12 | mpancom 422 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
| 14 | negid 8319 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
| 15 | 13, 14 | eqtrd 2238 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
| 16 | 1, 3, 7, 8, 9, 10, 11, 15 | isgrpi 13356 | . . . 4 ⊢ ℂfld ∈ Grp |
| 17 | 16 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ Grp) |
| 18 | mulcl 8052 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 19 | 18 | 3adant1 1018 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 20 | mulass 8056 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
| 21 | 20 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 22 | adddi 8057 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
| 23 | 22 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 24 | adddir 8063 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
| 25 | 24 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 26 | 1cnd 8088 | . . 3 ⊢ (⊤ → 1 ∈ ℂ) | |
| 27 | mullid 8070 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
| 28 | 27 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
| 29 | mulrid 8069 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
| 30 | 29 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥) |
| 31 | mulcom 8054 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 32 | 31 | 3adant1 1018 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
| 33 | 2, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32 | iscrngd 13804 | . 2 ⊢ (⊤ → ℂfld ∈ CRing) |
| 34 | 33 | mptru 1382 | 1 ⊢ ℂfld ∈ CRing |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 981 = wceq 1373 ⊤wtru 1374 ∈ wcel 2176 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 0cc0 7925 1c1 7926 + caddc 7928 · cmul 7930 -cneg 8244 Basecbs 12832 +gcplusg 12909 .rcmulr 12910 Grpcgrp 13332 CRingccrg 13759 ℂfldccnfld 14318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-addf 8047 ax-mulf 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 df-9 9102 df-n0 9296 df-z 9373 df-dec 9505 df-uz 9649 df-rp 9776 df-fz 10131 df-cj 11153 df-abs 11310 df-struct 12834 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-plusg 12922 df-mulr 12923 df-starv 12924 df-tset 12928 df-ple 12929 df-ds 12931 df-unif 12932 df-0g 13090 df-topgen 13092 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-cmn 13622 df-mgp 13683 df-ring 13760 df-cring 13761 df-bl 14308 df-mopn 14309 df-fg 14311 df-metu 14312 df-cnfld 14319 |
| This theorem is referenced by: cnring 14332 cnfldui 14351 zringcrng 14354 zring0 14362 |
| Copyright terms: Public domain | W3C validator |