![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncrng | GIF version |
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
cncrng | ⊢ ℂfld ∈ CRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 13716 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
3 | cnfldadd 13717 | . . . 4 ⊢ + = (+g‘ℂfld) | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
5 | cnfldmul 13718 | . . . 4 ⊢ · = (.r‘ℂfld) | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
7 | addcl 7949 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
8 | addass 7954 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
9 | 0cn 7962 | . . . . 5 ⊢ 0 ∈ ℂ | |
10 | addlid 8109 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
11 | negcl 8170 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
12 | addcom 8107 | . . . . . . 7 ⊢ ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) | |
13 | 11, 12 | mpancom 422 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
14 | negid 8217 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
15 | 13, 14 | eqtrd 2220 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
16 | 1, 3, 7, 8, 9, 10, 11, 15 | isgrpi 12921 | . . . 4 ⊢ ℂfld ∈ Grp |
17 | 16 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ Grp) |
18 | mulcl 7951 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
19 | 18 | 3adant1 1016 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
20 | mulass 7955 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
21 | 20 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
22 | adddi 7956 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
23 | 22 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
24 | adddir 7961 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
25 | 24 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
26 | 1cnd 7986 | . . 3 ⊢ (⊤ → 1 ∈ ℂ) | |
27 | mullid 7968 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
28 | 27 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
29 | mulrid 7967 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
30 | 29 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥) |
31 | mulcom 7953 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
32 | 31 | 3adant1 1016 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
33 | 2, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32 | iscrngd 13289 | . 2 ⊢ (⊤ → ℂfld ∈ CRing) |
34 | 33 | mptru 1372 | 1 ⊢ ℂfld ∈ CRing |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 979 = wceq 1363 ⊤wtru 1364 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ℂcc 7822 0cc0 7824 1c1 7825 + caddc 7827 · cmul 7829 -cneg 8142 Basecbs 12475 +gcplusg 12550 .rcmulr 12551 Grpcgrp 12898 CRingccrg 13244 ℂfldccnfld 13712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-mulrcl 7923 ax-addcom 7924 ax-mulcom 7925 ax-addass 7926 ax-mulass 7927 ax-distr 7928 ax-i2m1 7929 ax-0lt1 7930 ax-1rid 7931 ax-0id 7932 ax-rnegex 7933 ax-precex 7934 ax-cnre 7935 ax-pre-ltirr 7936 ax-pre-ltwlin 7937 ax-pre-lttrn 7938 ax-pre-apti 7939 ax-pre-ltadd 7940 ax-pre-mulgt0 7941 ax-addf 7946 ax-mulf 7947 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-tp 3612 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-xr 8009 df-ltxr 8010 df-le 8011 df-sub 8143 df-neg 8144 df-reap 8545 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-7 8996 df-8 8997 df-9 8998 df-n0 9190 df-z 9267 df-dec 9398 df-uz 9542 df-fz 10022 df-cj 10864 df-struct 12477 df-ndx 12478 df-slot 12479 df-base 12481 df-sets 12482 df-plusg 12563 df-mulr 12564 df-starv 12565 df-0g 12724 df-mgm 12793 df-sgrp 12826 df-mnd 12839 df-grp 12901 df-cmn 13122 df-mgp 13171 df-ring 13245 df-cring 13246 df-icnfld 13713 |
This theorem is referenced by: cnring 13721 zringcrng 13739 zring0 13747 |
Copyright terms: Public domain | W3C validator |