![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cncrng | GIF version |
Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
cncrng | ⊢ ℂfld ∈ CRing |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 14059 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
3 | cnfldadd 14061 | . . . 4 ⊢ + = (+g‘ℂfld) | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
5 | cnfldmul 14063 | . . . 4 ⊢ · = (.r‘ℂfld) | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
7 | addcl 7999 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
8 | addass 8004 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
9 | 0cn 8013 | . . . . 5 ⊢ 0 ∈ ℂ | |
10 | addlid 8160 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
11 | negcl 8221 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
12 | addcom 8158 | . . . . . . 7 ⊢ ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) | |
13 | 11, 12 | mpancom 422 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
14 | negid 8268 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
15 | 13, 14 | eqtrd 2226 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
16 | 1, 3, 7, 8, 9, 10, 11, 15 | isgrpi 13099 | . . . 4 ⊢ ℂfld ∈ Grp |
17 | 16 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ Grp) |
18 | mulcl 8001 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
19 | 18 | 3adant1 1017 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
20 | mulass 8005 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
21 | 20 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
22 | adddi 8006 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
23 | 22 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
24 | adddir 8012 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
25 | 24 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
26 | 1cnd 8037 | . . 3 ⊢ (⊤ → 1 ∈ ℂ) | |
27 | mullid 8019 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
28 | 27 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
29 | mulrid 8018 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
30 | 29 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥) |
31 | mulcom 8003 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
32 | 31 | 3adant1 1017 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
33 | 2, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32 | iscrngd 13541 | . 2 ⊢ (⊤ → ℂfld ∈ CRing) |
34 | 33 | mptru 1373 | 1 ⊢ ℂfld ∈ CRing |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 980 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 ℂcc 7872 0cc0 7874 1c1 7875 + caddc 7877 · cmul 7879 -cneg 8193 Basecbs 12621 +gcplusg 12698 .rcmulr 12699 Grpcgrp 13075 CRingccrg 13496 ℂfldccnfld 14055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-addf 7996 ax-mulf 7997 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-tp 3627 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-inn 8985 df-2 9043 df-3 9044 df-4 9045 df-5 9046 df-6 9047 df-7 9048 df-8 9049 df-9 9050 df-n0 9244 df-z 9321 df-dec 9452 df-uz 9596 df-rp 9723 df-fz 10078 df-cj 10989 df-abs 11146 df-struct 12623 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-plusg 12711 df-mulr 12712 df-starv 12713 df-tset 12717 df-ple 12718 df-ds 12720 df-unif 12721 df-0g 12872 df-topgen 12874 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-cmn 13359 df-mgp 13420 df-ring 13497 df-cring 13498 df-bl 14045 df-mopn 14046 df-fg 14048 df-metu 14049 df-cnfld 14056 |
This theorem is referenced by: cnring 14069 cnfldui 14088 zringcrng 14091 zring0 14099 |
Copyright terms: Public domain | W3C validator |