| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncrng | GIF version | ||
| Description: The complex numbers form a commutative ring. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| cncrng | ⊢ ℂfld ∈ CRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas 14524 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → ℂ = (Base‘ℂfld)) |
| 3 | cnfldadd 14526 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → + = (+g‘ℂfld)) |
| 5 | cnfldmul 14528 | . . . 4 ⊢ · = (.r‘ℂfld) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → · = (.r‘ℂfld)) |
| 7 | addcl 8124 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
| 8 | addass 8129 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
| 9 | 0cn 8138 | . . . . 5 ⊢ 0 ∈ ℂ | |
| 10 | addlid 8285 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0 + 𝑥) = 𝑥) | |
| 11 | negcl 8346 | . . . . 5 ⊢ (𝑥 ∈ ℂ → -𝑥 ∈ ℂ) | |
| 12 | addcom 8283 | . . . . . . 7 ⊢ ((-𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) | |
| 13 | 11, 12 | mpancom 422 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = (𝑥 + -𝑥)) |
| 14 | negid 8393 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (𝑥 + -𝑥) = 0) | |
| 15 | 13, 14 | eqtrd 2262 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (-𝑥 + 𝑥) = 0) |
| 16 | 1, 3, 7, 8, 9, 10, 11, 15 | isgrpi 13557 | . . . 4 ⊢ ℂfld ∈ Grp |
| 17 | 16 | a1i 9 | . . 3 ⊢ (⊤ → ℂfld ∈ Grp) |
| 18 | mulcl 8126 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) | |
| 19 | 18 | 3adant1 1039 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ) |
| 20 | mulass 8130 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) | |
| 21 | 20 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 22 | adddi 8131 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | |
| 23 | 22 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 24 | adddir 8137 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) | |
| 25 | 24 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 26 | 1cnd 8162 | . . 3 ⊢ (⊤ → 1 ∈ ℂ) | |
| 27 | mullid 8144 | . . . 4 ⊢ (𝑥 ∈ ℂ → (1 · 𝑥) = 𝑥) | |
| 28 | 27 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (1 · 𝑥) = 𝑥) |
| 29 | mulrid 8143 | . . . 4 ⊢ (𝑥 ∈ ℂ → (𝑥 · 1) = 𝑥) | |
| 30 | 29 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥 · 1) = 𝑥) |
| 31 | mulcom 8128 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) | |
| 32 | 31 | 3adant1 1039 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) = (𝑦 · 𝑥)) |
| 33 | 2, 4, 6, 17, 19, 21, 23, 25, 26, 28, 30, 32 | iscrngd 14005 | . 2 ⊢ (⊤ → ℂfld ∈ CRing) |
| 34 | 33 | mptru 1404 | 1 ⊢ ℂfld ∈ CRing |
| Colors of variables: wff set class |
| Syntax hints: ∧ w3a 1002 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6001 ℂcc 7997 0cc0 7999 1c1 8000 + caddc 8002 · cmul 8004 -cneg 8318 Basecbs 13032 +gcplusg 13110 .rcmulr 13111 Grpcgrp 13533 CRingccrg 13960 ℂfldccnfld 14520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-addf 8121 ax-mulf 8122 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-5 9172 df-6 9173 df-7 9174 df-8 9175 df-9 9176 df-n0 9370 df-z 9447 df-dec 9579 df-uz 9723 df-rp 9850 df-fz 10205 df-cj 11353 df-abs 11510 df-struct 13034 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-starv 13125 df-tset 13129 df-ple 13130 df-ds 13132 df-unif 13133 df-0g 13291 df-topgen 13293 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-cmn 13823 df-mgp 13884 df-ring 13961 df-cring 13962 df-bl 14510 df-mopn 14511 df-fg 14513 df-metu 14514 df-cnfld 14521 |
| This theorem is referenced by: cnring 14534 cnfldui 14553 zringcrng 14556 zring0 14564 |
| Copyright terms: Public domain | W3C validator |