Step | Hyp | Ref
| Expression |
1 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0)) |
2 | 1 | eleq1d 2235 |
. . . 4
⊢ (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 0) ∈
(ℤ≥‘𝑀))) |
3 | 2 | imbi2d 229 |
. . 3
⊢ (𝑗 = 0 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) ∈
(ℤ≥‘𝑀)))) |
4 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘)) |
5 | 4 | eleq1d 2235 |
. . . 4
⊢ (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀))) |
6 | 5 | imbi2d 229 |
. . 3
⊢ (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)))) |
7 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1))) |
8 | 7 | eleq1d 2235 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀))) |
9 | 8 | imbi2d 229 |
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)))) |
10 | | oveq2 5850 |
. . . . 5
⊢ (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾)) |
11 | 10 | eleq1d 2235 |
. . . 4
⊢ (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
12 | 11 | imbi2d 229 |
. . 3
⊢ (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)))) |
13 | | eluzelcn 9477 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
14 | 13 | addid1d 8047 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 0) = 𝑁) |
15 | 14 | eleq1d 2235 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑁 + 0) ∈
(ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
16 | 15 | ibir 176 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 0) ∈
(ℤ≥‘𝑀)) |
17 | | nn0cn 9124 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
18 | | ax-1cn 7846 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
19 | | addass 7883 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
20 | 18, 19 | mp3an3 1316 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
21 | 13, 17, 20 | syl2anr 288 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
22 | 21 | adantr 274 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
23 | | peano2uz 9521 |
. . . . . . 7
⊢ ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → ((𝑁 + 𝑘) + 1) ∈
(ℤ≥‘𝑀)) |
24 | 23 | adantl 275 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) ∈
(ℤ≥‘𝑀)) |
25 | 22, 24 | eqeltrrd 2244 |
. . . . 5
⊢ (((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)) |
26 | 25 | exp31 362 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)))) |
27 | 26 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)))) |
28 | 3, 6, 9, 12, 16, 27 | nn0ind 9305 |
. 2
⊢ (𝐾 ∈ ℕ0
→ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
29 | 28 | impcom 124 |
1
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) |