| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 5933 |
. . . . 5
⊢ (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0)) |
| 2 | 1 | eleq1d 2265 |
. . . 4
⊢ (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 0) ∈
(ℤ≥‘𝑀))) |
| 3 | 2 | imbi2d 230 |
. . 3
⊢ (𝑗 = 0 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 0) ∈
(ℤ≥‘𝑀)))) |
| 4 | | oveq2 5933 |
. . . . 5
⊢ (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘)) |
| 5 | 4 | eleq1d 2265 |
. . . 4
⊢ (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀))) |
| 6 | 5 | imbi2d 230 |
. . 3
⊢ (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)))) |
| 7 | | oveq2 5933 |
. . . . 5
⊢ (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1))) |
| 8 | 7 | eleq1d 2265 |
. . . 4
⊢ (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀))) |
| 9 | 8 | imbi2d 230 |
. . 3
⊢ (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)))) |
| 10 | | oveq2 5933 |
. . . . 5
⊢ (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾)) |
| 11 | 10 | eleq1d 2265 |
. . . 4
⊢ (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ≥‘𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
| 12 | 11 | imbi2d 230 |
. . 3
⊢ (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝑗) ∈ (ℤ≥‘𝑀)) ↔ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)))) |
| 13 | | eluzelcn 9629 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℂ) |
| 14 | 13 | addridd 8192 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 0) = 𝑁) |
| 15 | 14 | eleq1d 2265 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑁 + 0) ∈
(ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘𝑀))) |
| 16 | 15 | ibir 177 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 0) ∈
(ℤ≥‘𝑀)) |
| 17 | | nn0cn 9276 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 18 | | ax-1cn 7989 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
| 19 | | addass 8026 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
| 20 | 18, 19 | mp3an3 1337 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
| 21 | 13, 17, 20 | syl2anr 290 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
| 22 | 21 | adantr 276 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1))) |
| 23 | | peano2uz 9674 |
. . . . . . 7
⊢ ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → ((𝑁 + 𝑘) + 1) ∈
(ℤ≥‘𝑀)) |
| 24 | 23 | adantl 277 |
. . . . . 6
⊢ (((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → ((𝑁 + 𝑘) + 1) ∈
(ℤ≥‘𝑀)) |
| 25 | 22, 24 | eqeltrrd 2274 |
. . . . 5
⊢ (((𝑘 ∈ ℕ0
∧ 𝑁 ∈
(ℤ≥‘𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)) |
| 26 | 25 | exp31 364 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑁 + 𝑘) ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)))) |
| 27 | 26 | a2d 26 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 𝑘) ∈ (ℤ≥‘𝑀)) → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + (𝑘 + 1)) ∈
(ℤ≥‘𝑀)))) |
| 28 | 3, 6, 9, 12, 16, 27 | nn0ind 9457 |
. 2
⊢ (𝐾 ∈ ℕ0
→ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀))) |
| 29 | 28 | impcom 125 |
1
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ≥‘𝑀)) |