Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzaddcl GIF version

 Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uzaddcl ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))

Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5826 . . . . 5 (𝑗 = 0 → (𝑁 + 𝑗) = (𝑁 + 0))
21eleq1d 2226 . . . 4 (𝑗 = 0 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 0) ∈ (ℤ𝑀)))
32imbi2d 229 . . 3 (𝑗 = 0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))))
4 oveq2 5826 . . . . 5 (𝑗 = 𝑘 → (𝑁 + 𝑗) = (𝑁 + 𝑘))
54eleq1d 2226 . . . 4 (𝑗 = 𝑘 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝑘) ∈ (ℤ𝑀)))
65imbi2d 229 . . 3 (𝑗 = 𝑘 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀))))
7 oveq2 5826 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑁 + 𝑗) = (𝑁 + (𝑘 + 1)))
87eleq1d 2226 . . . 4 (𝑗 = (𝑘 + 1) → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀)))
98imbi2d 229 . . 3 (𝑗 = (𝑘 + 1) → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
10 oveq2 5826 . . . . 5 (𝑗 = 𝐾 → (𝑁 + 𝑗) = (𝑁 + 𝐾))
1110eleq1d 2226 . . . 4 (𝑗 = 𝐾 → ((𝑁 + 𝑗) ∈ (ℤ𝑀) ↔ (𝑁 + 𝐾) ∈ (ℤ𝑀)))
1211imbi2d 229 . . 3 (𝑗 = 𝐾 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑗) ∈ (ℤ𝑀)) ↔ (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀))))
13 eluzelcn 9433 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℂ)
1413addid1d 8007 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) = 𝑁)
1514eleq1d 2226 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 0) ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ𝑀)))
1615ibir 176 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 0) ∈ (ℤ𝑀))
17 nn0cn 9083 . . . . . . . 8 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
18 ax-1cn 7808 . . . . . . . . 9 1 ∈ ℂ
19 addass 7845 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
2018, 19mp3an3 1308 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
2113, 17, 20syl2anr 288 . . . . . . 7 ((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
2221adantr 274 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
23 peano2uz 9477 . . . . . . 7 ((𝑁 + 𝑘) ∈ (ℤ𝑀) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
2423adantl 275 . . . . . 6 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → ((𝑁 + 𝑘) + 1) ∈ (ℤ𝑀))
2522, 24eqeltrrd 2235 . . . . 5 (((𝑘 ∈ ℕ0𝑁 ∈ (ℤ𝑀)) ∧ (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))
2625exp31 362 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → ((𝑁 + 𝑘) ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
2726a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝑘) ∈ (ℤ𝑀)) → (𝑁 ∈ (ℤ𝑀) → (𝑁 + (𝑘 + 1)) ∈ (ℤ𝑀))))
283, 6, 9, 12, 16, 27nn0ind 9261 . 2 (𝐾 ∈ ℕ0 → (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ𝑀)))
2928impcom 124 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℕ0) → (𝑁 + 𝐾) ∈ (ℤ𝑀))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1335   ∈ wcel 2128  ‘cfv 5167  (class class class)co 5818  ℂcc 7713  0cc0 7715  1c1 7716   + caddc 7718  ℕ0cn0 9073  ℤ≥cuz 9422 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-ltadd 7831 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-inn 8817  df-n0 9074  df-z 9151  df-uz 9423 This theorem is referenced by:  elfz0add  10004  zpnn0elfzo  10088  mertenslemi1  11414  eftlub  11569
 Copyright terms: Public domain W3C validator