ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztp GIF version

Theorem fztp 10144
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fztp (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})

Proof of Theorem fztp
StepHypRef Expression
1 uzid 9606 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2 peano2uz 9648 . . 3 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
3 fzsuc 10135 . . 3 ((𝑀 + 1) ∈ (ℤ𝑀) → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}))
41, 2, 33syl 17 . 2 (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}))
5 zcn 9322 . . . . 5 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
6 ax-1cn 7965 . . . . . 6 1 ∈ ℂ
7 addass 8002 . . . . . 6 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
86, 6, 7mp3an23 1340 . . . . 5 (𝑀 ∈ ℂ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
95, 8syl 14 . . . 4 (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + (1 + 1)))
10 df-2 9041 . . . . 5 2 = (1 + 1)
1110oveq2i 5929 . . . 4 (𝑀 + 2) = (𝑀 + (1 + 1))
129, 11eqtr4di 2244 . . 3 (𝑀 ∈ ℤ → ((𝑀 + 1) + 1) = (𝑀 + 2))
1312oveq2d 5934 . 2 (𝑀 ∈ ℤ → (𝑀...((𝑀 + 1) + 1)) = (𝑀...(𝑀 + 2)))
14 fzpr 10143 . . . 4 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 1)) = {𝑀, (𝑀 + 1)})
1512sneqd 3631 . . . 4 (𝑀 ∈ ℤ → {((𝑀 + 1) + 1)} = {(𝑀 + 2)})
1614, 15uneq12d 3314 . . 3 (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)}))
17 df-tp 3626 . . 3 {𝑀, (𝑀 + 1), (𝑀 + 2)} = ({𝑀, (𝑀 + 1)} ∪ {(𝑀 + 2)})
1816, 17eqtr4di 2244 . 2 (𝑀 ∈ ℤ → ((𝑀...(𝑀 + 1)) ∪ {((𝑀 + 1) + 1)}) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
194, 13, 183eqtr3d 2234 1 (𝑀 ∈ ℤ → (𝑀...(𝑀 + 2)) = {𝑀, (𝑀 + 1), (𝑀 + 2)})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  cun 3151  {csn 3618  {cpr 3619  {ctp 3620  cfv 5254  (class class class)co 5918  cc 7870  1c1 7873   + caddc 7875  2c2 9033  cz 9317  cuz 9592  ...cfz 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075
This theorem is referenced by:  fztpval  10149  fz0tp  10188  fz0to4untppr  10190  fzo0to3tp  10286
  Copyright terms: Public domain W3C validator