| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | GIF version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addassd | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addass 8097 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1252 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8069 |
| This theorem depends on definitions: df-bi 117 df-3an 985 |
| This theorem is referenced by: readdcan 8254 muladd11r 8270 cnegexlem1 8289 cnegex 8292 addcan 8294 addcan2 8295 negeu 8305 addsubass 8324 nppcan3 8338 muladd 8498 ltadd2 8534 add1p1 9329 div4p1lem1div2 9333 peano2z 9450 zaddcllempos 9451 zpnn0elfzo1 10381 exbtwnzlemstep 10434 rebtwn2zlemstep 10439 flhalf 10489 flqdiv 10510 binom2 10840 binom3 10846 bernneq 10849 omgadd 10991 ccatass 11109 cvg1nlemres 11462 recvguniqlem 11471 resqrexlemover 11487 bdtrilem 11716 bdtri 11717 bcxmas 11966 efsep 12168 efi4p 12194 efival 12209 divalglemnqt 12397 flodddiv4 12413 gcdaddm 12471 pcadd2 12830 4sqlem11 12890 limcimolemlt 15303 tangtx 15477 binom4 15618 2lgslem3c 15739 2lgslem3d 15740 |
| Copyright terms: Public domain | W3C validator |