| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | GIF version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addassd | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addass 8009 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 + caddc 7882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 7981 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: readdcan 8166 muladd11r 8182 cnegexlem1 8201 cnegex 8204 addcan 8206 addcan2 8207 negeu 8217 addsubass 8236 nppcan3 8250 muladd 8410 ltadd2 8446 add1p1 9241 div4p1lem1div2 9245 peano2z 9362 zaddcllempos 9363 zpnn0elfzo1 10284 exbtwnzlemstep 10337 rebtwn2zlemstep 10342 flhalf 10392 flqdiv 10413 binom2 10743 binom3 10749 bernneq 10752 omgadd 10894 cvg1nlemres 11150 recvguniqlem 11159 resqrexlemover 11175 bdtrilem 11404 bdtri 11405 bcxmas 11654 efsep 11856 efi4p 11882 efival 11897 divalglemnqt 12085 flodddiv4 12101 gcdaddm 12151 pcadd2 12510 4sqlem11 12570 limcimolemlt 14900 tangtx 15074 binom4 15215 2lgslem3c 15336 2lgslem3d 15337 |
| Copyright terms: Public domain | W3C validator |