| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | GIF version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addassd | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addass 8028 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8000 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: readdcan 8185 muladd11r 8201 cnegexlem1 8220 cnegex 8223 addcan 8225 addcan2 8226 negeu 8236 addsubass 8255 nppcan3 8269 muladd 8429 ltadd2 8465 add1p1 9260 div4p1lem1div2 9264 peano2z 9381 zaddcllempos 9382 zpnn0elfzo1 10303 exbtwnzlemstep 10356 rebtwn2zlemstep 10361 flhalf 10411 flqdiv 10432 binom2 10762 binom3 10768 bernneq 10771 omgadd 10913 cvg1nlemres 11169 recvguniqlem 11178 resqrexlemover 11194 bdtrilem 11423 bdtri 11424 bcxmas 11673 efsep 11875 efi4p 11901 efival 11916 divalglemnqt 12104 flodddiv4 12120 gcdaddm 12178 pcadd2 12537 4sqlem11 12597 limcimolemlt 14986 tangtx 15160 binom4 15301 2lgslem3c 15422 2lgslem3d 15423 |
| Copyright terms: Public domain | W3C validator |