ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassd GIF version

Theorem addassd 7921
Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcld.1 (𝜑𝐴 ∈ ℂ)
addcld.2 (𝜑𝐵 ∈ ℂ)
addassd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
addassd (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem addassd
StepHypRef Expression
1 addcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addassd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 addass 7883 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
51, 2, 3, 4syl3anc 1228 1 (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-addass 7855
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  readdcan  8038  muladd11r  8054  cnegexlem1  8073  cnegex  8076  addcan  8078  addcan2  8079  negeu  8089  addsubass  8108  nppcan3  8122  muladd  8282  ltadd2  8317  add1p1  9106  div4p1lem1div2  9110  peano2z  9227  zaddcllempos  9228  zpnn0elfzo1  10143  exbtwnzlemstep  10183  rebtwn2zlemstep  10188  flhalf  10237  flqdiv  10256  binom2  10566  binom3  10572  bernneq  10575  omgadd  10715  cvg1nlemres  10927  recvguniqlem  10936  resqrexlemover  10952  bdtrilem  11180  bdtri  11181  bcxmas  11430  efsep  11632  efi4p  11658  efival  11673  divalglemnqt  11857  flodddiv4  11871  gcdaddm  11917  limcimolemlt  13283  tangtx  13409  binom4  13547
  Copyright terms: Public domain W3C validator