| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | GIF version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addassd | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addass 8137 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 8109 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: readdcan 8294 muladd11r 8310 cnegexlem1 8329 cnegex 8332 addcan 8334 addcan2 8335 negeu 8345 addsubass 8364 nppcan3 8378 muladd 8538 ltadd2 8574 add1p1 9369 div4p1lem1div2 9373 peano2z 9490 zaddcllempos 9491 zpnn0elfzo1 10422 exbtwnzlemstep 10475 rebtwn2zlemstep 10480 flhalf 10530 flqdiv 10551 binom2 10881 binom3 10887 bernneq 10890 omgadd 11032 ccatass 11151 cvg1nlemres 11504 recvguniqlem 11513 resqrexlemover 11529 bdtrilem 11758 bdtri 11759 bcxmas 12008 efsep 12210 efi4p 12236 efival 12251 divalglemnqt 12439 flodddiv4 12455 gcdaddm 12513 pcadd2 12872 4sqlem11 12932 limcimolemlt 15346 tangtx 15520 binom4 15661 2lgslem3c 15782 2lgslem3d 15783 |
| Copyright terms: Public domain | W3C validator |