| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addassd | GIF version | ||
| Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addassd | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | addass 8026 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-addass 7998 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: readdcan 8183 muladd11r 8199 cnegexlem1 8218 cnegex 8221 addcan 8223 addcan2 8224 negeu 8234 addsubass 8253 nppcan3 8267 muladd 8427 ltadd2 8463 add1p1 9258 div4p1lem1div2 9262 peano2z 9379 zaddcllempos 9380 zpnn0elfzo1 10301 exbtwnzlemstep 10354 rebtwn2zlemstep 10359 flhalf 10409 flqdiv 10430 binom2 10760 binom3 10766 bernneq 10769 omgadd 10911 cvg1nlemres 11167 recvguniqlem 11176 resqrexlemover 11192 bdtrilem 11421 bdtri 11422 bcxmas 11671 efsep 11873 efi4p 11899 efival 11914 divalglemnqt 12102 flodddiv4 12118 gcdaddm 12176 pcadd2 12535 4sqlem11 12595 limcimolemlt 14984 tangtx 15158 binom4 15299 2lgslem3c 15420 2lgslem3d 15421 |
| Copyright terms: Public domain | W3C validator |