Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addassd | GIF version |
Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addassd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addassd | ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | addassd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | addass 7883 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | |
5 | 1, 2, 3, 4 | syl3anc 1228 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-addass 7855 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: readdcan 8038 muladd11r 8054 cnegexlem1 8073 cnegex 8076 addcan 8078 addcan2 8079 negeu 8089 addsubass 8108 nppcan3 8122 muladd 8282 ltadd2 8317 add1p1 9106 div4p1lem1div2 9110 peano2z 9227 zaddcllempos 9228 zpnn0elfzo1 10143 exbtwnzlemstep 10183 rebtwn2zlemstep 10188 flhalf 10237 flqdiv 10256 binom2 10566 binom3 10572 bernneq 10575 omgadd 10715 cvg1nlemres 10927 recvguniqlem 10936 resqrexlemover 10952 bdtrilem 11180 bdtri 11181 bcxmas 11430 efsep 11632 efi4p 11658 efival 11673 divalglemnqt 11857 flodddiv4 11871 gcdaddm 11917 limcimolemlt 13283 tangtx 13409 binom4 13547 |
Copyright terms: Public domain | W3C validator |