ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassd GIF version

Theorem addassd 8042
Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcld.1 (𝜑𝐴 ∈ ℂ)
addcld.2 (𝜑𝐵 ∈ ℂ)
addassd.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
addassd (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))

Proof of Theorem addassd
StepHypRef Expression
1 addcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addassd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 addass 8002 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
51, 2, 3, 4syl3anc 1249 1 (𝜑 → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5918  cc 7870   + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  readdcan  8159  muladd11r  8175  cnegexlem1  8194  cnegex  8197  addcan  8199  addcan2  8200  negeu  8210  addsubass  8229  nppcan3  8243  muladd  8403  ltadd2  8438  add1p1  9232  div4p1lem1div2  9236  peano2z  9353  zaddcllempos  9354  zpnn0elfzo1  10275  exbtwnzlemstep  10316  rebtwn2zlemstep  10321  flhalf  10371  flqdiv  10392  binom2  10722  binom3  10728  bernneq  10731  omgadd  10873  cvg1nlemres  11129  recvguniqlem  11138  resqrexlemover  11154  bdtrilem  11382  bdtri  11383  bcxmas  11632  efsep  11834  efi4p  11860  efival  11875  divalglemnqt  12061  flodddiv4  12075  gcdaddm  12121  pcadd2  12479  4sqlem11  12539  limcimolemlt  14818  tangtx  14973  binom4  15111
  Copyright terms: Public domain W3C validator