ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add4 GIF version

Theorem add4 7794
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
add4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))

Proof of Theorem add4
StepHypRef Expression
1 add12 7791 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷)))
213expb 1150 . . . 4 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 + (𝐶 + 𝐷)) = (𝐶 + (𝐵 + 𝐷)))
32oveq2d 5722 . . 3 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
43adantll 463 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + (𝐵 + (𝐶 + 𝐷))) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
5 addcl 7617 . . 3 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
6 addass 7622 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
763expa 1149 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
85, 7sylan2 282 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = (𝐴 + (𝐵 + (𝐶 + 𝐷))))
9 addcl 7617 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵 + 𝐷) ∈ ℂ)
10 addass 7622 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
11103expa 1149 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 + 𝐷) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
129, 11sylan2 282 . . 3 (((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
1312an4s 558 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) + (𝐵 + 𝐷)) = (𝐴 + (𝐶 + (𝐵 + 𝐷))))
144, 8, 133eqtr4d 2142 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  (class class class)co 5706  cc 7498   + caddc 7503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-addcl 7591  ax-addcom 7595  ax-addass 7597
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-rex 2381  df-v 2643  df-un 3025  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-iota 5024  df-fv 5067  df-ov 5709
This theorem is referenced by:  add42  7795  add4i  7798  add4d  7802  3dvds2dec  11358  opoe  11387
  Copyright terms: Public domain W3C validator