ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptolemy GIF version

Theorem ptolemy 15463
Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 12221, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
Assertion
Ref Expression
ptolemy (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))

Proof of Theorem ptolemy
StepHypRef Expression
1 addcl 8092 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
213ad2ant2 1024 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 + 𝐷) ∈ ℂ)
32coscld 12188 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶 + 𝐷)) ∈ ℂ)
43negnegd 8416 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → --(cos‘(𝐶 + 𝐷)) = (cos‘(𝐶 + 𝐷)))
5 addlid 8253 . . . . . . . . . . . . . . 15 ((𝐶 + 𝐷) ∈ ℂ → (0 + (𝐶 + 𝐷)) = (𝐶 + 𝐷))
65oveq1d 5989 . . . . . . . . . . . . . 14 ((𝐶 + 𝐷) ∈ ℂ → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))))
72, 6syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))))
8 0cnd 8107 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → 0 ∈ ℂ)
9 addcl 8092 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
109adantr 276 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐵) ∈ ℂ)
11103adant3 1022 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴 + 𝐵) ∈ ℂ)
128, 11, 2pnpcan2d 8463 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = (0 − (𝐴 + 𝐵)))
13 simp3 1004 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π)
1413oveq2d 5990 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − π))
157, 12, 143eqtr3rd 2251 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − π) = (0 − (𝐴 + 𝐵)))
16 df-neg 8288 . . . . . . . . . . . 12 -(𝐴 + 𝐵) = (0 − (𝐴 + 𝐵))
1715, 16eqtr4di 2260 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − π) = -(𝐴 + 𝐵))
1817fveq2d 5607 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶 + 𝐷) − π)) = (cos‘-(𝐴 + 𝐵)))
19 cosmpi 15455 . . . . . . . . . . 11 ((𝐶 + 𝐷) ∈ ℂ → (cos‘((𝐶 + 𝐷) − π)) = -(cos‘(𝐶 + 𝐷)))
202, 19syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶 + 𝐷) − π)) = -(cos‘(𝐶 + 𝐷)))
21 cosneg 12204 . . . . . . . . . . 11 ((𝐴 + 𝐵) ∈ ℂ → (cos‘-(𝐴 + 𝐵)) = (cos‘(𝐴 + 𝐵)))
2211, 21syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘-(𝐴 + 𝐵)) = (cos‘(𝐴 + 𝐵)))
2318, 20, 223eqtr3d 2250 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → -(cos‘(𝐶 + 𝐷)) = (cos‘(𝐴 + 𝐵)))
2423negeqd 8309 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → --(cos‘(𝐶 + 𝐷)) = -(cos‘(𝐴 + 𝐵)))
254, 24eqtr3d 2244 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶 + 𝐷)) = -(cos‘(𝐴 + 𝐵)))
2625oveq2d 5990 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) = ((cos‘(𝐶𝐷)) − -(cos‘(𝐴 + 𝐵))))
27 subcl 8313 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
2827adantl 277 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶𝐷) ∈ ℂ)
2928coscld 12188 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘(𝐶𝐷)) ∈ ℂ)
30293adant3 1022 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶𝐷)) ∈ ℂ)
3111coscld 12188 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴 + 𝐵)) ∈ ℂ)
3230, 31subnegd 8432 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − -(cos‘(𝐴 + 𝐵))) = ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))))
3326, 32eqtrd 2242 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) = ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))))
3433oveq1d 5989 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2) = (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2))
3534oveq2d 5990 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
36 subcl 8313 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
37363ad2ant1 1023 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴𝐵) ∈ ℂ)
3837coscld 12188 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴𝐵)) ∈ ℂ)
3938, 31subcld 8425 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) ∈ ℂ)
4030, 31addcld 8134 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) ∈ ℂ)
41 2cn 9149 . . . . . . 7 2 ∈ ℂ
42 2ap0 9171 . . . . . . 7 2 # 0
4341, 42pm3.2i 272 . . . . . 6 (2 ∈ ℂ ∧ 2 # 0)
4443a1i 9 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (2 ∈ ℂ ∧ 2 # 0))
45 divdirap 8812 . . . . 5 ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) ∈ ℂ ∧ ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
4639, 40, 44, 45syl3anc 1252 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
4738, 31, 30nppcan3d 8452 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) = ((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))))
4847oveq1d 5989 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
4946, 48eqtr3d 2244 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
5035, 49eqtrd 2242 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
51 sinmul 12221 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2))
52513ad2ant1 1023 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2))
53 sinmul 12221 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((sin‘𝐶) · (sin‘𝐷)) = (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2))
54533ad2ant2 1024 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘𝐶) · (sin‘𝐷)) = (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2))
5552, 54oveq12d 5992 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)))
56 simplr 528 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
57 simpll 527 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
58 simprl 529 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
5956, 57, 58pnpcan2d 8463 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 + 𝐶) − (𝐴 + 𝐶)) = (𝐵𝐴))
6059fveq2d 5607 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) = (cos‘(𝐵𝐴)))
61603adant3 1022 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) = (cos‘(𝐵𝐴)))
621adantl 277 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) ∈ ℂ)
6310, 62, 283jca 1182 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
64633adant3 1022 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
65 addass 8097 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))))
6664, 65syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))))
67 oveq1 5981 . . . . . . . . . . 11 (((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = (π + (𝐶𝐷)))
68673ad2ant3 1025 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = (π + (𝐶𝐷)))
69 simpl 109 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐶 ∈ ℂ)
70 simpr 110 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐷 ∈ ℂ)
7169, 70, 693jca 1182 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ))
72713ad2ant2 1024 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ))
73 ppncan 8356 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐷) + (𝐶𝐷)) = (𝐶 + 𝐶))
7473oveq2d 5990 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
7572, 74syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
76 simp1 1002 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
7769, 69jca 306 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ))
78773ad2ant2 1024 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ))
79 add4 8275 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
8076, 78, 79syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
81 addcl 8092 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ)
8281ad2ant2r 509 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐶) ∈ ℂ)
83 addcl 8092 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) ∈ ℂ)
8483ad2ant2lr 510 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 + 𝐶) ∈ ℂ)
8582, 84jca 306 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ))
86853adant3 1022 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ))
87 addcom 8251 . . . . . . . . . . . 12 (((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐶)) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
8886, 87syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐶) + (𝐵 + 𝐶)) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
8975, 80, 883eqtrd 2246 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
9066, 68, 893eqtr3rd 2251 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐵 + 𝐶) + (𝐴 + 𝐶)) = (π + (𝐶𝐷)))
91 picn 15426 . . . . . . . . . . 11 π ∈ ℂ
92 addcom 8251 . . . . . . . . . . 11 ((π ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
9391, 28, 92sylancr 414 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
94933adant3 1022 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
9590, 94eqtrd 2242 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐵 + 𝐶) + (𝐴 + 𝐶)) = ((𝐶𝐷) + π))
9695fveq2d 5607 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶))) = (cos‘((𝐶𝐷) + π)))
97 cosppi 15457 . . . . . . . . 9 ((𝐶𝐷) ∈ ℂ → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
9828, 97syl 14 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
99983adant3 1022 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
10096, 99eqtrd 2242 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶))) = -(cos‘(𝐶𝐷)))
10161, 100oveq12d 5992 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) = ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))))
102 subcl 8313 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
103102ancoms 268 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
104103adantr 276 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵𝐴) ∈ ℂ)
105104coscld 12188 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘(𝐵𝐴)) ∈ ℂ)
106105, 29subnegd 8432 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
1071063adant3 1022 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
108101, 107eqtrd 2242 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
109108oveq1d 5989 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2) = (((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))) / 2))
110 sinmul 12221 . . . . 5 (((𝐵 + 𝐶) ∈ ℂ ∧ (𝐴 + 𝐶) ∈ ℂ) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
11184, 82, 110syl2anc 411 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
1121113adant3 1022 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
113 cosneg 12204 . . . . . . . 8 ((𝐴𝐵) ∈ ℂ → (cos‘-(𝐴𝐵)) = (cos‘(𝐴𝐵)))
11436, 113syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-(𝐴𝐵)) = (cos‘(𝐴𝐵)))
115 negsubdi2 8373 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
116115fveq2d 5607 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-(𝐴𝐵)) = (cos‘(𝐵𝐴)))
117114, 116eqtr3d 2244 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴𝐵)) = (cos‘(𝐵𝐴)))
1181173ad2ant1 1023 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴𝐵)) = (cos‘(𝐵𝐴)))
119118oveq1d 5989 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
120119oveq1d 5989 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2) = (((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))) / 2))
121109, 112, 1203eqtr4d 2252 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
12250, 55, 1213eqtr4d 2252 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 983   = wceq 1375  wcel 2180   class class class wbr 4062  cfv 5294  (class class class)co 5974  cc 7965  0cc0 7967   + caddc 7970   · cmul 7972  cmin 8285  -cneg 8286   # cap 8696   / cdiv 8787  2c2 9129  sincsin 12121  cosccos 12122  πcpi 12124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-pre-suploc 8088  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-disj 4039  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-pm 6768  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-ioo 10056  df-ioc 10057  df-ico 10058  df-icc 10059  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-fac 10915  df-bc 10937  df-ihash 10965  df-shft 11292  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-ef 12125  df-sin 12127  df-cos 12128  df-pi 12130  df-rest 13240  df-topgen 13259  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-top 14637  df-topon 14650  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-tx 14892  df-cncf 15210  df-limced 15295  df-dvap 15296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator