Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptolemy GIF version

Theorem ptolemy 13084
 Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 11618, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
Assertion
Ref Expression
ptolemy (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))

Proof of Theorem ptolemy
StepHypRef Expression
1 addcl 7836 . . . . . . . . . . 11 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 + 𝐷) ∈ ℂ)
213ad2ant2 1004 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 + 𝐷) ∈ ℂ)
32coscld 11585 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶 + 𝐷)) ∈ ℂ)
43negnegd 8156 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → --(cos‘(𝐶 + 𝐷)) = (cos‘(𝐶 + 𝐷)))
5 addid2 7993 . . . . . . . . . . . . . . 15 ((𝐶 + 𝐷) ∈ ℂ → (0 + (𝐶 + 𝐷)) = (𝐶 + 𝐷))
65oveq1d 5829 . . . . . . . . . . . . . 14 ((𝐶 + 𝐷) ∈ ℂ → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))))
72, 6syl 14 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))))
8 0cnd 7850 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → 0 ∈ ℂ)
9 addcl 7836 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
109adantr 274 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐵) ∈ ℂ)
11103adant3 1002 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴 + 𝐵) ∈ ℂ)
128, 11, 2pnpcan2d 8203 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((0 + (𝐶 + 𝐷)) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = (0 − (𝐴 + 𝐵)))
13 simp3 984 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π)
1413oveq2d 5830 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − ((𝐴 + 𝐵) + (𝐶 + 𝐷))) = ((𝐶 + 𝐷) − π))
157, 12, 143eqtr3rd 2196 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − π) = (0 − (𝐴 + 𝐵)))
16 df-neg 8028 . . . . . . . . . . . 12 -(𝐴 + 𝐵) = (0 − (𝐴 + 𝐵))
1715, 16eqtr4di 2205 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐶 + 𝐷) − π) = -(𝐴 + 𝐵))
1817fveq2d 5465 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶 + 𝐷) − π)) = (cos‘-(𝐴 + 𝐵)))
19 cosmpi 13076 . . . . . . . . . . 11 ((𝐶 + 𝐷) ∈ ℂ → (cos‘((𝐶 + 𝐷) − π)) = -(cos‘(𝐶 + 𝐷)))
202, 19syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶 + 𝐷) − π)) = -(cos‘(𝐶 + 𝐷)))
21 cosneg 11601 . . . . . . . . . . 11 ((𝐴 + 𝐵) ∈ ℂ → (cos‘-(𝐴 + 𝐵)) = (cos‘(𝐴 + 𝐵)))
2211, 21syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘-(𝐴 + 𝐵)) = (cos‘(𝐴 + 𝐵)))
2318, 20, 223eqtr3d 2195 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → -(cos‘(𝐶 + 𝐷)) = (cos‘(𝐴 + 𝐵)))
2423negeqd 8049 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → --(cos‘(𝐶 + 𝐷)) = -(cos‘(𝐴 + 𝐵)))
254, 24eqtr3d 2189 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶 + 𝐷)) = -(cos‘(𝐴 + 𝐵)))
2625oveq2d 5830 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) = ((cos‘(𝐶𝐷)) − -(cos‘(𝐴 + 𝐵))))
27 subcl 8053 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶𝐷) ∈ ℂ)
2827adantl 275 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶𝐷) ∈ ℂ)
2928coscld 11585 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘(𝐶𝐷)) ∈ ℂ)
30293adant3 1002 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐶𝐷)) ∈ ℂ)
3111coscld 11585 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴 + 𝐵)) ∈ ℂ)
3230, 31subnegd 8172 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − -(cos‘(𝐴 + 𝐵))) = ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))))
3326, 32eqtrd 2187 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) = ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))))
3433oveq1d 5829 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2) = (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2))
3534oveq2d 5830 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
36 subcl 8053 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
37363ad2ant1 1003 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴𝐵) ∈ ℂ)
3837coscld 11585 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴𝐵)) ∈ ℂ)
3938, 31subcld 8165 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) ∈ ℂ)
4030, 31addcld 7876 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) ∈ ℂ)
41 2cn 8883 . . . . . . 7 2 ∈ ℂ
42 2ap0 8905 . . . . . . 7 2 # 0
4341, 42pm3.2i 270 . . . . . 6 (2 ∈ ℂ ∧ 2 # 0)
4443a1i 9 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (2 ∈ ℂ ∧ 2 # 0))
45 divdirap 8549 . . . . 5 ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) ∈ ℂ ∧ ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
4639, 40, 44, 45syl3anc 1217 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)))
4738, 31, 30nppcan3d 8192 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) = ((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))))
4847oveq1d 5829 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) + ((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵)))) / 2) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
4946, 48eqtr3d 2189 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) + (cos‘(𝐴 + 𝐵))) / 2)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
5035, 49eqtrd 2187 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
51 sinmul 11618 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2))
52513ad2ant1 1003 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2))
53 sinmul 11618 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((sin‘𝐶) · (sin‘𝐷)) = (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2))
54533ad2ant2 1004 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘𝐶) · (sin‘𝐷)) = (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2))
5552, 54oveq12d 5832 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((((cos‘(𝐴𝐵)) − (cos‘(𝐴 + 𝐵))) / 2) + (((cos‘(𝐶𝐷)) − (cos‘(𝐶 + 𝐷))) / 2)))
56 simplr 520 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐵 ∈ ℂ)
57 simpll 519 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐴 ∈ ℂ)
58 simprl 521 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → 𝐶 ∈ ℂ)
5956, 57, 58pnpcan2d 8203 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐵 + 𝐶) − (𝐴 + 𝐶)) = (𝐵𝐴))
6059fveq2d 5465 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) = (cos‘(𝐵𝐴)))
61603adant3 1002 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) = (cos‘(𝐵𝐴)))
621adantl 275 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐶 + 𝐷) ∈ ℂ)
6310, 62, 283jca 1162 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
64633adant3 1002 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
65 addass 7841 . . . . . . . . . . 11 (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐶 + 𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))))
6664, 65syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))))
67 oveq1 5821 . . . . . . . . . . 11 (((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = (π + (𝐶𝐷)))
68673ad2ant3 1005 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((𝐴 + 𝐵) + (𝐶 + 𝐷)) + (𝐶𝐷)) = (π + (𝐶𝐷)))
69 simpl 108 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐶 ∈ ℂ)
70 simpr 109 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐷 ∈ ℂ)
7169, 70, 693jca 1162 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ))
72713ad2ant2 1004 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ))
73 ppncan 8096 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 + 𝐷) + (𝐶𝐷)) = (𝐶 + 𝐶))
7473oveq2d 5830 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
7572, 74syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐴 + 𝐵) + (𝐶 + 𝐶)))
76 simp1 982 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
7769, 69jca 304 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ))
78773ad2ant2 1004 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ))
79 add4 8015 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
8076, 78, 79syl2anc 409 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + (𝐶 + 𝐶)) = ((𝐴 + 𝐶) + (𝐵 + 𝐶)))
81 addcl 7836 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + 𝐶) ∈ ℂ)
8281ad2ant2r 501 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐴 + 𝐶) ∈ ℂ)
83 addcl 7836 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) ∈ ℂ)
8483ad2ant2lr 502 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵 + 𝐶) ∈ ℂ)
8582, 84jca 304 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ))
86853adant3 1002 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ))
87 addcom 7991 . . . . . . . . . . . 12 (((𝐴 + 𝐶) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) → ((𝐴 + 𝐶) + (𝐵 + 𝐶)) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
8886, 87syl 14 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐶) + (𝐵 + 𝐶)) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
8975, 80, 883eqtrd 2191 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐴 + 𝐵) + ((𝐶 + 𝐷) + (𝐶𝐷))) = ((𝐵 + 𝐶) + (𝐴 + 𝐶)))
9066, 68, 893eqtr3rd 2196 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐵 + 𝐶) + (𝐴 + 𝐶)) = (π + (𝐶𝐷)))
91 picn 13047 . . . . . . . . . . 11 π ∈ ℂ
92 addcom 7991 . . . . . . . . . . 11 ((π ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
9391, 28, 92sylancr 411 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
94933adant3 1002 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (π + (𝐶𝐷)) = ((𝐶𝐷) + π))
9590, 94eqtrd 2187 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((𝐵 + 𝐶) + (𝐴 + 𝐶)) = ((𝐶𝐷) + π))
9695fveq2d 5465 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶))) = (cos‘((𝐶𝐷) + π)))
97 cosppi 13078 . . . . . . . . 9 ((𝐶𝐷) ∈ ℂ → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
9828, 97syl 14 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
99983adant3 1002 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐶𝐷) + π)) = -(cos‘(𝐶𝐷)))
10096, 99eqtrd 2187 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶))) = -(cos‘(𝐶𝐷)))
10161, 100oveq12d 5832 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) = ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))))
102 subcl 8053 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
103102ancoms 266 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵𝐴) ∈ ℂ)
104103adantr 274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (𝐵𝐴) ∈ ℂ)
105104coscld 11585 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (cos‘(𝐵𝐴)) ∈ ℂ)
106105, 29subnegd 8172 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
1071063adant3 1002 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐵𝐴)) − -(cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
108101, 107eqtrd 2187 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
109108oveq1d 5829 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2) = (((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))) / 2))
110 sinmul 11618 . . . . 5 (((𝐵 + 𝐶) ∈ ℂ ∧ (𝐴 + 𝐶) ∈ ℂ) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
11184, 82, 110syl2anc 409 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
1121113adant3 1002 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘((𝐵 + 𝐶) − (𝐴 + 𝐶))) − (cos‘((𝐵 + 𝐶) + (𝐴 + 𝐶)))) / 2))
113 cosneg 11601 . . . . . . . 8 ((𝐴𝐵) ∈ ℂ → (cos‘-(𝐴𝐵)) = (cos‘(𝐴𝐵)))
11436, 113syl 14 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-(𝐴𝐵)) = (cos‘(𝐴𝐵)))
115 negsubdi2 8113 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴𝐵) = (𝐵𝐴))
116115fveq2d 5465 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘-(𝐴𝐵)) = (cos‘(𝐵𝐴)))
117114, 116eqtr3d 2189 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴𝐵)) = (cos‘(𝐵𝐴)))
1181173ad2ant1 1003 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (cos‘(𝐴𝐵)) = (cos‘(𝐵𝐴)))
119118oveq1d 5829 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) = ((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))))
120119oveq1d 5829 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2) = (((cos‘(𝐵𝐴)) + (cos‘(𝐶𝐷))) / 2))
121109, 112, 1203eqtr4d 2197 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))) = (((cos‘(𝐴𝐵)) + (cos‘(𝐶𝐷))) / 2))
12250, 55, 1213eqtr4d 2197 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = π) → (((sin‘𝐴) · (sin‘𝐵)) + ((sin‘𝐶) · (sin‘𝐷))) = ((sin‘(𝐵 + 𝐶)) · (sin‘(𝐴 + 𝐶))))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 2125   class class class wbr 3961  ‘cfv 5163  (class class class)co 5814  ℂcc 7709  0cc0 7711   + caddc 7714   · cmul 7716   − cmin 8025  -cneg 8026   # cap 8435   / cdiv 8524  2c2 8863  sincsin 11518  cosccos 11519  πcpi 11521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-pre-suploc 7832  ax-addf 7833  ax-mulf 7834 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-map 6584  df-pm 6585  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-ioo 9774  df-ioc 9775  df-ico 9776  df-icc 9777  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-shft 10692  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-sin 11524  df-cos 11525  df-pi 11527  df-rest 12292  df-topgen 12311  df-psmet 12326  df-xmet 12327  df-met 12328  df-bl 12329  df-mopn 12330  df-top 12335  df-topon 12348  df-bases 12380  df-ntr 12435  df-cn 12527  df-cnp 12528  df-tx 12592  df-cncf 12897  df-limced 12964  df-dvap 12965 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator