ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add32 GIF version

Theorem add32 8293
Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 13-Nov-1999.)
Assertion
Ref Expression
add32 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))

Proof of Theorem add32
StepHypRef Expression
1 addcom 8271 . . . 4 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 + 𝐶) = (𝐶 + 𝐵))
21oveq2d 6010 . . 3 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐴 + (𝐶 + 𝐵)))
323adant1 1039 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐴 + (𝐶 + 𝐵)))
4 addass 8117 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
5 addass 8117 . . 3 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐶) + 𝐵) = (𝐴 + (𝐶 + 𝐵)))
653com23 1233 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) + 𝐵) = (𝐴 + (𝐶 + 𝐵)))
73, 4, 63eqtr4d 2272 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  (class class class)co 5994  cc 7985   + caddc 7990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-addcom 8087  ax-addass 8089
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5274  df-fv 5322  df-ov 5997
This theorem is referenced by:  add32r  8294  add32i  8298  add32d  8302  cnegexlem2  8310  cnegexlem3  8311  2addsub  8348  seqshft2g  10691  opeo  12394
  Copyright terms: Public domain W3C validator