| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > clim2ser | GIF version | ||
| Description: The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.) |
| Ref | Expression |
|---|---|
| clim2ser.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| clim2ser.2 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| clim2ser.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| clim2ser.5 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
| Ref | Expression |
|---|---|
| clim2ser | ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . 2 ⊢ (ℤ≥‘(𝑁 + 1)) = (ℤ≥‘(𝑁 + 1)) | |
| 2 | clim2ser.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
| 3 | clim2ser.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | 2, 3 | eleqtrdi 2289 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 5 | peano2uz 9657 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) |
| 7 | eluzelz 9610 | . . 3 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
| 8 | 6, 7 | syl 14 | . 2 ⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 9 | clim2ser.5 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) | |
| 10 | eluzel2 9606 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 11 | 4, 10 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 12 | clim2ser.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 13 | 3, 11, 12 | serf 10575 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 14 | 13, 2 | ffvelcdmd 5698 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
| 15 | seqex 10541 | . . 3 ⊢ seq(𝑁 + 1)( + , 𝐹) ∈ V | |
| 16 | 15 | a1i 9 | . 2 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ∈ V) |
| 17 | 13 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 18 | 6, 3 | eleqtrrdi 2290 | . . . 4 ⊢ (𝜑 → (𝑁 + 1) ∈ 𝑍) |
| 19 | 3 | uztrn2 9619 | . . . 4 ⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ 𝑍) |
| 20 | 18, 19 | sylan 283 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ 𝑍) |
| 21 | 17, 20 | ffvelcdmd 5698 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
| 22 | addcl 8004 | . . . . . 6 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
| 23 | 22 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
| 24 | addass 8009 | . . . . . 6 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) | |
| 25 | 24 | adantl 277 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑘 + 𝑥) + 𝑦) = (𝑘 + (𝑥 + 𝑦))) |
| 26 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) | |
| 27 | 4 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 28 | 3 | eleq2i 2263 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
| 29 | 28, 12 | sylan2br 288 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 29 | adantlr 477 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 31 | 23, 25, 26, 27, 30 | seq3split 10580 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗))) |
| 32 | 31 | oveq1d 5937 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → ((seq𝑀( + , 𝐹)‘𝑗) − (seq𝑀( + , 𝐹)‘𝑁)) = (((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) − (seq𝑀( + , 𝐹)‘𝑁))) |
| 33 | 14 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq𝑀( + , 𝐹)‘𝑁) ∈ ℂ) |
| 34 | 3 | uztrn2 9619 | . . . . . . . 8 ⊢ (((𝑁 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
| 35 | 18, 34 | sylan 283 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → 𝑘 ∈ 𝑍) |
| 36 | 35, 12 | syldan 282 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘(𝑁 + 1))) → (𝐹‘𝑘) ∈ ℂ) |
| 37 | 1, 8, 36 | serf 10575 | . . . . 5 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹):(ℤ≥‘(𝑁 + 1))⟶ℂ) |
| 38 | 37 | ffvelcdmda 5697 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) ∈ ℂ) |
| 39 | 33, 38 | pncan2d 8339 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (((seq𝑀( + , 𝐹)‘𝑁) + (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) − (seq𝑀( + , 𝐹)‘𝑁)) = (seq(𝑁 + 1)( + , 𝐹)‘𝑗)) |
| 40 | 32, 39 | eqtr2d 2230 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘(𝑁 + 1))) → (seq(𝑁 + 1)( + , 𝐹)‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) − (seq𝑀( + , 𝐹)‘𝑁))) |
| 41 | 1, 8, 9, 14, 16, 21, 40 | climsubc1 11497 | 1 ⊢ (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 Vcvv 2763 class class class wbr 4033 ⟶wf 5254 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 1c1 7880 + caddc 7882 − cmin 8197 ℤcz 9326 ℤ≥cuz 9601 seqcseq 10539 ⇝ cli 11443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-fz 10084 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 |
| This theorem is referenced by: iserex 11504 ege2le3 11836 |
| Copyright terms: Public domain | W3C validator |