ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq GIF version

Theorem cvgratnnlemseq 10981
Description: Lemma for cvgratnn 10986. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemseq (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑖,𝐹,𝑘   𝑖,𝑀   𝑖,𝑁   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑀(𝑘)

Proof of Theorem cvgratnnlemseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9115 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 8838 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 9961 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
54adantr 271 . . . . 5 ((𝜑𝑀 < 𝑁) → seq1( + , 𝐹):ℕ⟶ℂ)
6 cvgratnn.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
76adantr 271 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ ℕ)
85, 7ffvelrnd 5449 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
9 eqid 2089 . . . . . . 7 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
106nnzd 8928 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1110peano2zd 8932 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
12 fveq2 5318 . . . . . . . . 9 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
1312eleq1d 2157 . . . . . . . 8 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
143ralrimiva 2447 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1514adantr 271 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
166peano2nnd 8498 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℕ)
17 eluznn 9148 . . . . . . . . 9 (((𝑀 + 1) ∈ ℕ ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1816, 17sylan 278 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1913, 15, 18rspcdva 2728 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ ℂ)
209, 11, 19serf 9961 . . . . . 6 (𝜑 → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2120adantr 271 . . . . 5 ((𝜑𝑀 < 𝑁) → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2211adantr 271 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ∈ ℤ)
23 cvgratnn.n . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
24 eluzelz 9089 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2625adantr 271 . . . . . 6 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ ℤ)
27 zltp1le 8865 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2810, 25, 27syl2anc 404 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2928biimpa 291 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ≤ 𝑁)
30 eluz2 9086 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
3122, 26, 29, 30syl3anbrc 1128 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
3221, 31ffvelrnd 5449 . . . 4 ((𝜑𝑀 < 𝑁) → (seq(𝑀 + 1)( + , 𝐹)‘𝑁) ∈ ℂ)
338, 32pncan2d 7856 . . 3 ((𝜑𝑀 < 𝑁) → (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
34 addcl 7528 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 272 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
36 addass 7533 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3736adantl 272 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
386, 1syl6eleq 2181 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
3938adantr 271 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ (ℤ‘1))
4014ad2antrr 473 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
41 simpr 109 . . . . . . 7 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ (ℤ‘1))
4241, 1syl6eleqr 2182 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
4313, 40, 42rspcdva 2728 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ ℂ)
4435, 37, 31, 39, 43seq3split 9968 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑁) = ((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
4544oveq1d 5681 . . 3 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)))
46 eqidd 2090 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) = (𝐹𝑖))
47 fveq2 5318 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
4847eleq1d 2157 . . . . 5 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
4914ad2antrr 473 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5016ad2antrr 473 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℕ)
51 simpr 109 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ (ℤ‘(𝑀 + 1)))
52 eluznn 9148 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5350, 51, 52syl2anc 404 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5448, 49, 53rspcdva 2728 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) ∈ ℂ)
5546, 31, 54fsum3ser 10852 . . 3 ((𝜑𝑀 < 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
5633, 45, 553eqtr4d 2131 . 2 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
57 simpr 109 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 = 𝑁)
586nnred 8496 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
5958ltp1d 8452 . . . . . . . 8 (𝜑𝑀 < (𝑀 + 1))
6059adantr 271 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 < (𝑀 + 1))
6157, 60eqbrtrrd 3873 . . . . . 6 ((𝜑𝑀 = 𝑁) → 𝑁 < (𝑀 + 1))
6211adantr 271 . . . . . . 7 ((𝜑𝑀 = 𝑁) → (𝑀 + 1) ∈ ℤ)
6325adantr 271 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑁 ∈ ℤ)
64 fzn 9517 . . . . . . 7 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6562, 63, 64syl2anc 404 . . . . . 6 ((𝜑𝑀 = 𝑁) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6661, 65mpbid 146 . . . . 5 ((𝜑𝑀 = 𝑁) → ((𝑀 + 1)...𝑁) = ∅)
6766sumeq1d 10816 . . . 4 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = Σ𝑖 ∈ ∅ (𝐹𝑖))
68 sum0 10841 . . . 4 Σ𝑖 ∈ ∅ (𝐹𝑖) = 0
6967, 68syl6eq 2137 . . 3 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = 0)
704, 6ffvelrnd 5449 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7170adantr 271 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7271subidd 7842 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = 0)
7357fveq2d 5322 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) = (seq1( + , 𝐹)‘𝑁))
7473oveq1d 5681 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)))
7569, 72, 743eqtr2rd 2128 . 2 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
76 eluzle 9092 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
7723, 76syl 14 . . 3 (𝜑𝑀𝑁)
78 zleloe 8858 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
7910, 25, 78syl2anc 404 . . 3 (𝜑 → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
8077, 79mpbid 146 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁))
8156, 75, 80mpjaodan 748 1 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 665  w3a 925   = wceq 1290  wcel 1439  wral 2360  c0 3287   class class class wbr 3851  wf 5024  cfv 5028  (class class class)co 5666  cc 7409  cr 7410  0cc0 7411  1c1 7412   + caddc 7414   · cmul 7416   < clt 7583  cle 7584  cmin 7714  cn 8483  cz 8811  cuz 9080  ...cfz 9485  seqcseq 9913  abscabs 10491  Σcsu 10803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-isom 5037  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-frec 6170  df-1o 6195  df-oadd 6199  df-er 6306  df-en 6512  df-dom 6513  df-fin 6514  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-q 9166  df-rp 9196  df-fz 9486  df-fzo 9615  df-iseq 9914  df-seq3 9915  df-exp 10016  df-ihash 10245  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493  df-clim 10728  df-isum 10804
This theorem is referenced by:  cvgratnnlemrate  10985
  Copyright terms: Public domain W3C validator