ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq GIF version

Theorem cvgratnnlemseq 11566
Description: Lemma for cvgratnn 11571. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemseq (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑖,𝐹,𝑘   𝑖,𝑀   𝑖,𝑁   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑀(𝑘)

Proof of Theorem cvgratnnlemseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9593 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9310 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10505 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
54adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → seq1( + , 𝐹):ℕ⟶ℂ)
6 cvgratnn.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
76adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ ℕ)
85, 7ffvelcdmd 5673 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
9 eqid 2189 . . . . . . 7 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
106nnzd 9404 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1110peano2zd 9408 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
12 fveq2 5534 . . . . . . . . 9 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
1312eleq1d 2258 . . . . . . . 8 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
143ralrimiva 2563 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1514adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
166peano2nnd 8964 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℕ)
17 eluznn 9630 . . . . . . . . 9 (((𝑀 + 1) ∈ ℕ ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1816, 17sylan 283 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1913, 15, 18rspcdva 2861 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ ℂ)
209, 11, 19serf 10505 . . . . . 6 (𝜑 → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2120adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2211adantr 276 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ∈ ℤ)
23 cvgratnn.n . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
24 eluzelz 9567 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2625adantr 276 . . . . . 6 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ ℤ)
27 zltp1le 9337 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2810, 25, 27syl2anc 411 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2928biimpa 296 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ≤ 𝑁)
30 eluz2 9564 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
3122, 26, 29, 30syl3anbrc 1183 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
3221, 31ffvelcdmd 5673 . . . 4 ((𝜑𝑀 < 𝑁) → (seq(𝑀 + 1)( + , 𝐹)‘𝑁) ∈ ℂ)
338, 32pncan2d 8300 . . 3 ((𝜑𝑀 < 𝑁) → (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
34 addcl 7966 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 277 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
36 addass 7971 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3736adantl 277 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
386, 1eleqtrdi 2282 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
3938adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ (ℤ‘1))
4014ad2antrr 488 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
41 simpr 110 . . . . . . 7 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ (ℤ‘1))
4241, 1eleqtrrdi 2283 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
4313, 40, 42rspcdva 2861 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ ℂ)
4435, 37, 31, 39, 43seq3split 10510 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑁) = ((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
4544oveq1d 5911 . . 3 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)))
46 eqidd 2190 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) = (𝐹𝑖))
47 fveq2 5534 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
4847eleq1d 2258 . . . . 5 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
4914ad2antrr 488 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5016ad2antrr 488 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℕ)
51 simpr 110 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ (ℤ‘(𝑀 + 1)))
52 eluznn 9630 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5350, 51, 52syl2anc 411 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5448, 49, 53rspcdva 2861 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) ∈ ℂ)
5546, 31, 54fsum3ser 11437 . . 3 ((𝜑𝑀 < 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
5633, 45, 553eqtr4d 2232 . 2 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
57 simpr 110 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 = 𝑁)
586nnred 8962 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
5958ltp1d 8917 . . . . . . . 8 (𝜑𝑀 < (𝑀 + 1))
6059adantr 276 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 < (𝑀 + 1))
6157, 60eqbrtrrd 4042 . . . . . 6 ((𝜑𝑀 = 𝑁) → 𝑁 < (𝑀 + 1))
6211adantr 276 . . . . . . 7 ((𝜑𝑀 = 𝑁) → (𝑀 + 1) ∈ ℤ)
6325adantr 276 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑁 ∈ ℤ)
64 fzn 10072 . . . . . . 7 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6562, 63, 64syl2anc 411 . . . . . 6 ((𝜑𝑀 = 𝑁) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6661, 65mpbid 147 . . . . 5 ((𝜑𝑀 = 𝑁) → ((𝑀 + 1)...𝑁) = ∅)
6766sumeq1d 11406 . . . 4 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = Σ𝑖 ∈ ∅ (𝐹𝑖))
68 sum0 11428 . . . 4 Σ𝑖 ∈ ∅ (𝐹𝑖) = 0
6967, 68eqtrdi 2238 . . 3 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = 0)
704, 6ffvelcdmd 5673 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7170adantr 276 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7271subidd 8286 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = 0)
7357fveq2d 5538 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) = (seq1( + , 𝐹)‘𝑁))
7473oveq1d 5911 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)))
7569, 72, 743eqtr2rd 2229 . 2 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
76 eluzle 9570 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
7723, 76syl 14 . . 3 (𝜑𝑀𝑁)
78 zleloe 9330 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
7910, 25, 78syl2anc 411 . . 3 (𝜑 → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
8077, 79mpbid 147 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁))
8156, 75, 80mpjaodan 799 1 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160  wral 2468  c0 3437   class class class wbr 4018  wf 5231  cfv 5235  (class class class)co 5896  cc 7839  cr 7840  0cc0 7841  1c1 7842   + caddc 7844   · cmul 7846   < clt 8022  cle 8023  cmin 8158  cn 8949  cz 9283  cuz 9558  ...cfz 10038  seqcseq 10476  abscabs 11038  Σcsu 11393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-frec 6416  df-1o 6441  df-oadd 6445  df-er 6559  df-en 6767  df-dom 6768  df-fin 6769  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-fz 10039  df-fzo 10173  df-seqfrec 10477  df-exp 10551  df-ihash 10788  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-clim 11319  df-sumdc 11394
This theorem is referenced by:  cvgratnnlemrate  11570
  Copyright terms: Public domain W3C validator