| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 9654 |
. . . . . . 7
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 9370 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
| 3 | | cvgratnn.6 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 4 | 1, 2, 3 | serf 10592 |
. . . . . 6
⊢ (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ) |
| 5 | 4 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → seq1( + , 𝐹):ℕ⟶ℂ) |
| 6 | | cvgratnn.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 7 | 6 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ) |
| 8 | 5, 7 | ffvelcdmd 5701 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ) |
| 9 | | eqid 2196 |
. . . . . . 7
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) |
| 10 | 6 | nnzd 9464 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 11 | 10 | peano2zd 9468 |
. . . . . . 7
⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 12 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 13 | 12 | eleq1d 2265 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑥) ∈ ℂ)) |
| 14 | 3 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 15 | 14 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 16 | 6 | peano2nnd 9022 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 1) ∈ ℕ) |
| 17 | | eluznn 9691 |
. . . . . . . . 9
⊢ (((𝑀 + 1) ∈ ℕ ∧ 𝑥 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑥 ∈ ℕ) |
| 18 | 16, 17 | sylan 283 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑥 ∈
ℕ) |
| 19 | 13, 15, 18 | rspcdva 2873 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ ℂ) |
| 20 | 9, 11, 19 | serf 10592 |
. . . . . 6
⊢ (𝜑 → seq(𝑀 + 1)( + , 𝐹):(ℤ≥‘(𝑀 +
1))⟶ℂ) |
| 21 | 20 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → seq(𝑀 + 1)( + , 𝐹):(ℤ≥‘(𝑀 +
1))⟶ℂ) |
| 22 | 11 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → (𝑀 + 1) ∈ ℤ) |
| 23 | | cvgratnn.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 24 | | eluzelz 9627 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 25 | 23, 24 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 26 | 25 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℤ) |
| 27 | | zltp1le 9397 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 28 | 10, 25, 27 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) |
| 29 | 28 | biimpa 296 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → (𝑀 + 1) ≤ 𝑁) |
| 30 | | eluz2 9624 |
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁)) |
| 31 | 22, 26, 29, 30 | syl3anbrc 1183 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → 𝑁 ∈ (ℤ≥‘(𝑀 + 1))) |
| 32 | 21, 31 | ffvelcdmd 5701 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → (seq(𝑀 + 1)( + , 𝐹)‘𝑁) ∈ ℂ) |
| 33 | 8, 32 | pncan2d 8356 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) |
| 34 | | addcl 8021 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) |
| 35 | 34 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
| 36 | | addass 8026 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 37 | 36 | adantl 277 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 38 | 6, 1 | eleqtrdi 2289 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 39 | 38 | adantr 276 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → 𝑀 ∈
(ℤ≥‘1)) |
| 40 | 14 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘1))
→ ∀𝑘 ∈
ℕ (𝐹‘𝑘) ∈
ℂ) |
| 41 | | simpr 110 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘1))
→ 𝑥 ∈
(ℤ≥‘1)) |
| 42 | 41, 1 | eleqtrrdi 2290 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘1))
→ 𝑥 ∈
ℕ) |
| 43 | 13, 40, 42 | rspcdva 2873 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ≥‘1))
→ (𝐹‘𝑥) ∈
ℂ) |
| 44 | 35, 37, 31, 39, 43 | seq3split 10597 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑁) = ((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁))) |
| 45 | 44 | oveq1d 5940 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀))) |
| 46 | | eqidd 2197 |
. . . 4
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑖) = (𝐹‘𝑖)) |
| 47 | | fveq2 5561 |
. . . . . 6
⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) |
| 48 | 47 | eleq1d 2265 |
. . . . 5
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑖) ∈ ℂ)) |
| 49 | 14 | ad2antrr 488 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ≥‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹‘𝑘) ∈ ℂ) |
| 50 | 16 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀 + 1) ∈
ℕ) |
| 51 | | simpr 110 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑖 ∈
(ℤ≥‘(𝑀 + 1))) |
| 52 | | eluznn 9691 |
. . . . . 6
⊢ (((𝑀 + 1) ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑖 ∈ ℕ) |
| 53 | 50, 51, 52 | syl2anc 411 |
. . . . 5
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑖 ∈
ℕ) |
| 54 | 48, 49, 53 | rspcdva 2873 |
. . . 4
⊢ (((𝜑 ∧ 𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑖) ∈ ℂ) |
| 55 | 46, 31, 54 | fsum3ser 11579 |
. . 3
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) |
| 56 | 33, 45, 55 | 3eqtr4d 2239 |
. 2
⊢ ((𝜑 ∧ 𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) |
| 57 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁) |
| 58 | 6 | nnred 9020 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 59 | 58 | ltp1d 8974 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 < (𝑀 + 1)) |
| 60 | 59 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → 𝑀 < (𝑀 + 1)) |
| 61 | 57, 60 | eqbrtrrd 4058 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → 𝑁 < (𝑀 + 1)) |
| 62 | 11 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → (𝑀 + 1) ∈ ℤ) |
| 63 | 25 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → 𝑁 ∈ ℤ) |
| 64 | | fzn 10134 |
. . . . . . 7
⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅)) |
| 65 | 62, 63, 64 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅)) |
| 66 | 61, 65 | mpbid 147 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → ((𝑀 + 1)...𝑁) = ∅) |
| 67 | 66 | sumeq1d 11548 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖) = Σ𝑖 ∈ ∅ (𝐹‘𝑖)) |
| 68 | | sum0 11570 |
. . . 4
⊢
Σ𝑖 ∈
∅ (𝐹‘𝑖) = 0 |
| 69 | 67, 68 | eqtrdi 2245 |
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖) = 0) |
| 70 | 4, 6 | ffvelcdmd 5701 |
. . . . 5
⊢ (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ) |
| 71 | 70 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ) |
| 72 | 71 | subidd 8342 |
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = 0) |
| 73 | 57 | fveq2d 5565 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) = (seq1( + , 𝐹)‘𝑁)) |
| 74 | 73 | oveq1d 5940 |
. . 3
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀))) |
| 75 | 69, 72, 74 | 3eqtr2rd 2236 |
. 2
⊢ ((𝜑 ∧ 𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) |
| 76 | | eluzle 9630 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) |
| 77 | 23, 76 | syl 14 |
. . 3
⊢ (𝜑 → 𝑀 ≤ 𝑁) |
| 78 | | zleloe 9390 |
. . . 4
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑀 = 𝑁))) |
| 79 | 10, 25, 78 | syl2anc 411 |
. . 3
⊢ (𝜑 → (𝑀 ≤ 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑀 = 𝑁))) |
| 80 | 77, 79 | mpbid 147 |
. 2
⊢ (𝜑 → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁)) |
| 81 | 56, 75, 80 | mpjaodan 799 |
1
⊢ (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹‘𝑖)) |