Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq GIF version

Theorem cvgratnnlemseq 11288
 Description: Lemma for cvgratnn 11293. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemseq (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑖,𝐹,𝑘   𝑖,𝑀   𝑖,𝑁   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑀(𝑘)

Proof of Theorem cvgratnnlemseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9354 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9074 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10240 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
54adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → seq1( + , 𝐹):ℕ⟶ℂ)
6 cvgratnn.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
76adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ ℕ)
85, 7ffvelrnd 5549 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
9 eqid 2137 . . . . . . 7 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
106nnzd 9165 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1110peano2zd 9169 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
12 fveq2 5414 . . . . . . . . 9 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
1312eleq1d 2206 . . . . . . . 8 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
143ralrimiva 2503 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1514adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
166peano2nnd 8728 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℕ)
17 eluznn 9387 . . . . . . . . 9 (((𝑀 + 1) ∈ ℕ ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1816, 17sylan 281 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1913, 15, 18rspcdva 2789 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ ℂ)
209, 11, 19serf 10240 . . . . . 6 (𝜑 → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2120adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2211adantr 274 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ∈ ℤ)
23 cvgratnn.n . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
24 eluzelz 9328 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2625adantr 274 . . . . . 6 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ ℤ)
27 zltp1le 9101 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2810, 25, 27syl2anc 408 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2928biimpa 294 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ≤ 𝑁)
30 eluz2 9325 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
3122, 26, 29, 30syl3anbrc 1165 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
3221, 31ffvelrnd 5549 . . . 4 ((𝜑𝑀 < 𝑁) → (seq(𝑀 + 1)( + , 𝐹)‘𝑁) ∈ ℂ)
338, 32pncan2d 8068 . . 3 ((𝜑𝑀 < 𝑁) → (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
34 addcl 7738 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 275 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
36 addass 7743 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3736adantl 275 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
386, 1eleqtrdi 2230 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
3938adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ (ℤ‘1))
4014ad2antrr 479 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
41 simpr 109 . . . . . . 7 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ (ℤ‘1))
4241, 1eleqtrrdi 2231 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
4313, 40, 42rspcdva 2789 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ ℂ)
4435, 37, 31, 39, 43seq3split 10245 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑁) = ((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
4544oveq1d 5782 . . 3 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)))
46 eqidd 2138 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) = (𝐹𝑖))
47 fveq2 5414 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
4847eleq1d 2206 . . . . 5 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
4914ad2antrr 479 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5016ad2antrr 479 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℕ)
51 simpr 109 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ (ℤ‘(𝑀 + 1)))
52 eluznn 9387 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5350, 51, 52syl2anc 408 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5448, 49, 53rspcdva 2789 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) ∈ ℂ)
5546, 31, 54fsum3ser 11159 . . 3 ((𝜑𝑀 < 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
5633, 45, 553eqtr4d 2180 . 2 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
57 simpr 109 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 = 𝑁)
586nnred 8726 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
5958ltp1d 8681 . . . . . . . 8 (𝜑𝑀 < (𝑀 + 1))
6059adantr 274 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 < (𝑀 + 1))
6157, 60eqbrtrrd 3947 . . . . . 6 ((𝜑𝑀 = 𝑁) → 𝑁 < (𝑀 + 1))
6211adantr 274 . . . . . . 7 ((𝜑𝑀 = 𝑁) → (𝑀 + 1) ∈ ℤ)
6325adantr 274 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑁 ∈ ℤ)
64 fzn 9815 . . . . . . 7 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6562, 63, 64syl2anc 408 . . . . . 6 ((𝜑𝑀 = 𝑁) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6661, 65mpbid 146 . . . . 5 ((𝜑𝑀 = 𝑁) → ((𝑀 + 1)...𝑁) = ∅)
6766sumeq1d 11128 . . . 4 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = Σ𝑖 ∈ ∅ (𝐹𝑖))
68 sum0 11150 . . . 4 Σ𝑖 ∈ ∅ (𝐹𝑖) = 0
6967, 68syl6eq 2186 . . 3 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = 0)
704, 6ffvelrnd 5549 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7170adantr 274 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7271subidd 8054 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = 0)
7357fveq2d 5418 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) = (seq1( + , 𝐹)‘𝑁))
7473oveq1d 5782 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)))
7569, 72, 743eqtr2rd 2177 . 2 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
76 eluzle 9331 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
7723, 76syl 14 . . 3 (𝜑𝑀𝑁)
78 zleloe 9094 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
7910, 25, 78syl2anc 408 . . 3 (𝜑 → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
8077, 79mpbid 146 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁))
8156, 75, 80mpjaodan 787 1 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   ∧ w3a 962   = wceq 1331   ∈ wcel 1480  ∀wral 2414  ∅c0 3358   class class class wbr 3924  ⟶wf 5114  ‘cfv 5118  (class class class)co 5767  ℂcc 7611  ℝcr 7612  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618   < clt 7793   ≤ cle 7794   − cmin 7926  ℕcn 8713  ℤcz 9047  ℤ≥cuz 9319  ...cfz 9783  seqcseq 10211  abscabs 10762  Σcsu 11115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-exp 10286  df-ihash 10515  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041  df-sumdc 11116 This theorem is referenced by:  cvgratnnlemrate  11292
 Copyright terms: Public domain W3C validator