ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq GIF version

Theorem cvgratnnlemseq 11295
Description: Lemma for cvgratnn 11300. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemseq (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑖,𝐹,𝑘   𝑖,𝑀   𝑖,𝑁   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑀(𝑘)

Proof of Theorem cvgratnnlemseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9361 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9081 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10247 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
54adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → seq1( + , 𝐹):ℕ⟶ℂ)
6 cvgratnn.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
76adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ ℕ)
85, 7ffvelrnd 5556 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
9 eqid 2139 . . . . . . 7 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
106nnzd 9172 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1110peano2zd 9176 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
12 fveq2 5421 . . . . . . . . 9 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
1312eleq1d 2208 . . . . . . . 8 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
143ralrimiva 2505 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1514adantr 274 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
166peano2nnd 8735 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℕ)
17 eluznn 9394 . . . . . . . . 9 (((𝑀 + 1) ∈ ℕ ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1816, 17sylan 281 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1913, 15, 18rspcdva 2794 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ ℂ)
209, 11, 19serf 10247 . . . . . 6 (𝜑 → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2120adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2211adantr 274 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ∈ ℤ)
23 cvgratnn.n . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
24 eluzelz 9335 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2625adantr 274 . . . . . 6 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ ℤ)
27 zltp1le 9108 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2810, 25, 27syl2anc 408 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2928biimpa 294 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ≤ 𝑁)
30 eluz2 9332 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
3122, 26, 29, 30syl3anbrc 1165 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
3221, 31ffvelrnd 5556 . . . 4 ((𝜑𝑀 < 𝑁) → (seq(𝑀 + 1)( + , 𝐹)‘𝑁) ∈ ℂ)
338, 32pncan2d 8075 . . 3 ((𝜑𝑀 < 𝑁) → (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
34 addcl 7745 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 275 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
36 addass 7750 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3736adantl 275 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
386, 1eleqtrdi 2232 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
3938adantr 274 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ (ℤ‘1))
4014ad2antrr 479 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
41 simpr 109 . . . . . . 7 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ (ℤ‘1))
4241, 1eleqtrrdi 2233 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
4313, 40, 42rspcdva 2794 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ ℂ)
4435, 37, 31, 39, 43seq3split 10252 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑁) = ((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
4544oveq1d 5789 . . 3 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)))
46 eqidd 2140 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) = (𝐹𝑖))
47 fveq2 5421 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
4847eleq1d 2208 . . . . 5 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
4914ad2antrr 479 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5016ad2antrr 479 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℕ)
51 simpr 109 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ (ℤ‘(𝑀 + 1)))
52 eluznn 9394 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5350, 51, 52syl2anc 408 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5448, 49, 53rspcdva 2794 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) ∈ ℂ)
5546, 31, 54fsum3ser 11166 . . 3 ((𝜑𝑀 < 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
5633, 45, 553eqtr4d 2182 . 2 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
57 simpr 109 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 = 𝑁)
586nnred 8733 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
5958ltp1d 8688 . . . . . . . 8 (𝜑𝑀 < (𝑀 + 1))
6059adantr 274 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 < (𝑀 + 1))
6157, 60eqbrtrrd 3952 . . . . . 6 ((𝜑𝑀 = 𝑁) → 𝑁 < (𝑀 + 1))
6211adantr 274 . . . . . . 7 ((𝜑𝑀 = 𝑁) → (𝑀 + 1) ∈ ℤ)
6325adantr 274 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑁 ∈ ℤ)
64 fzn 9822 . . . . . . 7 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6562, 63, 64syl2anc 408 . . . . . 6 ((𝜑𝑀 = 𝑁) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6661, 65mpbid 146 . . . . 5 ((𝜑𝑀 = 𝑁) → ((𝑀 + 1)...𝑁) = ∅)
6766sumeq1d 11135 . . . 4 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = Σ𝑖 ∈ ∅ (𝐹𝑖))
68 sum0 11157 . . . 4 Σ𝑖 ∈ ∅ (𝐹𝑖) = 0
6967, 68syl6eq 2188 . . 3 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = 0)
704, 6ffvelrnd 5556 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7170adantr 274 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7271subidd 8061 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = 0)
7357fveq2d 5425 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) = (seq1( + , 𝐹)‘𝑁))
7473oveq1d 5789 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)))
7569, 72, 743eqtr2rd 2179 . 2 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
76 eluzle 9338 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
7723, 76syl 14 . . 3 (𝜑𝑀𝑁)
78 zleloe 9101 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
7910, 25, 78syl2anc 408 . . 3 (𝜑 → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
8077, 79mpbid 146 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁))
8156, 75, 80mpjaodan 787 1 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wral 2416  c0 3363   class class class wbr 3929  wf 5119  cfv 5123  (class class class)co 5774  cc 7618  cr 7619  0cc0 7620  1c1 7621   + caddc 7623   · cmul 7625   < clt 7800  cle 7801  cmin 7933  cn 8720  cz 9054  cuz 9326  ...cfz 9790  seqcseq 10218  abscabs 10769  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  cvgratnnlemrate  11299
  Copyright terms: Public domain W3C validator