Step | Hyp | Ref
| Expression |
1 | | nnuz 9563 |
. . . . . . 7
β’ β =
(β€β₯β1) |
2 | | 1zzd 9280 |
. . . . . . 7
β’ (π β 1 β
β€) |
3 | | cvgratnn.6 |
. . . . . . 7
β’ ((π β§ π β β) β (πΉβπ) β β) |
4 | 1, 2, 3 | serf 10474 |
. . . . . 6
β’ (π β seq1( + , πΉ):ββΆβ) |
5 | 4 | adantr 276 |
. . . . 5
β’ ((π β§ π < π) β seq1( + , πΉ):ββΆβ) |
6 | | cvgratnn.m |
. . . . . 6
β’ (π β π β β) |
7 | 6 | adantr 276 |
. . . . 5
β’ ((π β§ π < π) β π β β) |
8 | 5, 7 | ffvelcdmd 5653 |
. . . 4
β’ ((π β§ π < π) β (seq1( + , πΉ)βπ) β β) |
9 | | eqid 2177 |
. . . . . . 7
β’
(β€β₯β(π + 1)) =
(β€β₯β(π + 1)) |
10 | 6 | nnzd 9374 |
. . . . . . . 8
β’ (π β π β β€) |
11 | 10 | peano2zd 9378 |
. . . . . . 7
β’ (π β (π + 1) β β€) |
12 | | fveq2 5516 |
. . . . . . . . 9
β’ (π = π₯ β (πΉβπ) = (πΉβπ₯)) |
13 | 12 | eleq1d 2246 |
. . . . . . . 8
β’ (π = π₯ β ((πΉβπ) β β β (πΉβπ₯) β β)) |
14 | 3 | ralrimiva 2550 |
. . . . . . . . 9
β’ (π β βπ β β (πΉβπ) β β) |
15 | 14 | adantr 276 |
. . . . . . . 8
β’ ((π β§ π₯ β (β€β₯β(π + 1))) β βπ β β (πΉβπ) β β) |
16 | 6 | peano2nnd 8934 |
. . . . . . . . 9
β’ (π β (π + 1) β β) |
17 | | eluznn 9600 |
. . . . . . . . 9
β’ (((π + 1) β β β§ π₯ β
(β€β₯β(π + 1))) β π₯ β β) |
18 | 16, 17 | sylan 283 |
. . . . . . . 8
β’ ((π β§ π₯ β (β€β₯β(π + 1))) β π₯ β
β) |
19 | 13, 15, 18 | rspcdva 2847 |
. . . . . . 7
β’ ((π β§ π₯ β (β€β₯β(π + 1))) β (πΉβπ₯) β β) |
20 | 9, 11, 19 | serf 10474 |
. . . . . 6
β’ (π β seq(π + 1)( + , πΉ):(β€β₯β(π +
1))βΆβ) |
21 | 20 | adantr 276 |
. . . . 5
β’ ((π β§ π < π) β seq(π + 1)( + , πΉ):(β€β₯β(π +
1))βΆβ) |
22 | 11 | adantr 276 |
. . . . . 6
β’ ((π β§ π < π) β (π + 1) β β€) |
23 | | cvgratnn.n |
. . . . . . . 8
β’ (π β π β (β€β₯βπ)) |
24 | | eluzelz 9537 |
. . . . . . . 8
β’ (π β
(β€β₯βπ) β π β β€) |
25 | 23, 24 | syl 14 |
. . . . . . 7
β’ (π β π β β€) |
26 | 25 | adantr 276 |
. . . . . 6
β’ ((π β§ π < π) β π β β€) |
27 | | zltp1le 9307 |
. . . . . . . 8
β’ ((π β β€ β§ π β β€) β (π < π β (π + 1) β€ π)) |
28 | 10, 25, 27 | syl2anc 411 |
. . . . . . 7
β’ (π β (π < π β (π + 1) β€ π)) |
29 | 28 | biimpa 296 |
. . . . . 6
β’ ((π β§ π < π) β (π + 1) β€ π) |
30 | | eluz2 9534 |
. . . . . 6
β’ (π β
(β€β₯β(π + 1)) β ((π + 1) β β€ β§ π β β€ β§ (π + 1) β€ π)) |
31 | 22, 26, 29, 30 | syl3anbrc 1181 |
. . . . 5
β’ ((π β§ π < π) β π β (β€β₯β(π + 1))) |
32 | 21, 31 | ffvelcdmd 5653 |
. . . 4
β’ ((π β§ π < π) β (seq(π + 1)( + , πΉ)βπ) β β) |
33 | 8, 32 | pncan2d 8270 |
. . 3
β’ ((π β§ π < π) β (((seq1( + , πΉ)βπ) + (seq(π + 1)( + , πΉ)βπ)) β (seq1( + , πΉ)βπ)) = (seq(π + 1)( + , πΉ)βπ)) |
34 | | addcl 7936 |
. . . . . 6
β’ ((π₯ β β β§ π¦ β β) β (π₯ + π¦) β β) |
35 | 34 | adantl 277 |
. . . . 5
β’ (((π β§ π < π) β§ (π₯ β β β§ π¦ β β)) β (π₯ + π¦) β β) |
36 | | addass 7941 |
. . . . . 6
β’ ((π₯ β β β§ π¦ β β β§ π§ β β) β ((π₯ + π¦) + π§) = (π₯ + (π¦ + π§))) |
37 | 36 | adantl 277 |
. . . . 5
β’ (((π β§ π < π) β§ (π₯ β β β§ π¦ β β β§ π§ β β)) β ((π₯ + π¦) + π§) = (π₯ + (π¦ + π§))) |
38 | 6, 1 | eleqtrdi 2270 |
. . . . . 6
β’ (π β π β
(β€β₯β1)) |
39 | 38 | adantr 276 |
. . . . 5
β’ ((π β§ π < π) β π β
(β€β₯β1)) |
40 | 14 | ad2antrr 488 |
. . . . . 6
β’ (((π β§ π < π) β§ π₯ β (β€β₯β1))
β βπ β
β (πΉβπ) β
β) |
41 | | simpr 110 |
. . . . . . 7
β’ (((π β§ π < π) β§ π₯ β (β€β₯β1))
β π₯ β
(β€β₯β1)) |
42 | 41, 1 | eleqtrrdi 2271 |
. . . . . 6
β’ (((π β§ π < π) β§ π₯ β (β€β₯β1))
β π₯ β
β) |
43 | 13, 40, 42 | rspcdva 2847 |
. . . . 5
β’ (((π β§ π < π) β§ π₯ β (β€β₯β1))
β (πΉβπ₯) β
β) |
44 | 35, 37, 31, 39, 43 | seq3split 10479 |
. . . 4
β’ ((π β§ π < π) β (seq1( + , πΉ)βπ) = ((seq1( + , πΉ)βπ) + (seq(π + 1)( + , πΉ)βπ))) |
45 | 44 | oveq1d 5890 |
. . 3
β’ ((π β§ π < π) β ((seq1( + , πΉ)βπ) β (seq1( + , πΉ)βπ)) = (((seq1( + , πΉ)βπ) + (seq(π + 1)( + , πΉ)βπ)) β (seq1( + , πΉ)βπ))) |
46 | | eqidd 2178 |
. . . 4
β’ (((π β§ π < π) β§ π β (β€β₯β(π + 1))) β (πΉβπ) = (πΉβπ)) |
47 | | fveq2 5516 |
. . . . . 6
β’ (π = π β (πΉβπ) = (πΉβπ)) |
48 | 47 | eleq1d 2246 |
. . . . 5
β’ (π = π β ((πΉβπ) β β β (πΉβπ) β β)) |
49 | 14 | ad2antrr 488 |
. . . . 5
β’ (((π β§ π < π) β§ π β (β€β₯β(π + 1))) β βπ β β (πΉβπ) β β) |
50 | 16 | ad2antrr 488 |
. . . . . 6
β’ (((π β§ π < π) β§ π β (β€β₯β(π + 1))) β (π + 1) β
β) |
51 | | simpr 110 |
. . . . . 6
β’ (((π β§ π < π) β§ π β (β€β₯β(π + 1))) β π β
(β€β₯β(π + 1))) |
52 | | eluznn 9600 |
. . . . . 6
β’ (((π + 1) β β β§ π β
(β€β₯β(π + 1))) β π β β) |
53 | 50, 51, 52 | syl2anc 411 |
. . . . 5
β’ (((π β§ π < π) β§ π β (β€β₯β(π + 1))) β π β
β) |
54 | 48, 49, 53 | rspcdva 2847 |
. . . 4
β’ (((π β§ π < π) β§ π β (β€β₯β(π + 1))) β (πΉβπ) β β) |
55 | 46, 31, 54 | fsum3ser 11405 |
. . 3
β’ ((π β§ π < π) β Ξ£π β ((π + 1)...π)(πΉβπ) = (seq(π + 1)( + , πΉ)βπ)) |
56 | 33, 45, 55 | 3eqtr4d 2220 |
. 2
β’ ((π β§ π < π) β ((seq1( + , πΉ)βπ) β (seq1( + , πΉ)βπ)) = Ξ£π β ((π + 1)...π)(πΉβπ)) |
57 | | simpr 110 |
. . . . . . 7
β’ ((π β§ π = π) β π = π) |
58 | 6 | nnred 8932 |
. . . . . . . . 9
β’ (π β π β β) |
59 | 58 | ltp1d 8887 |
. . . . . . . 8
β’ (π β π < (π + 1)) |
60 | 59 | adantr 276 |
. . . . . . 7
β’ ((π β§ π = π) β π < (π + 1)) |
61 | 57, 60 | eqbrtrrd 4028 |
. . . . . 6
β’ ((π β§ π = π) β π < (π + 1)) |
62 | 11 | adantr 276 |
. . . . . . 7
β’ ((π β§ π = π) β (π + 1) β β€) |
63 | 25 | adantr 276 |
. . . . . . 7
β’ ((π β§ π = π) β π β β€) |
64 | | fzn 10042 |
. . . . . . 7
β’ (((π + 1) β β€ β§ π β β€) β (π < (π + 1) β ((π + 1)...π) = β
)) |
65 | 62, 63, 64 | syl2anc 411 |
. . . . . 6
β’ ((π β§ π = π) β (π < (π + 1) β ((π + 1)...π) = β
)) |
66 | 61, 65 | mpbid 147 |
. . . . 5
β’ ((π β§ π = π) β ((π + 1)...π) = β
) |
67 | 66 | sumeq1d 11374 |
. . . 4
β’ ((π β§ π = π) β Ξ£π β ((π + 1)...π)(πΉβπ) = Ξ£π β β
(πΉβπ)) |
68 | | sum0 11396 |
. . . 4
β’
Ξ£π β
β
(πΉβπ) = 0 |
69 | 67, 68 | eqtrdi 2226 |
. . 3
β’ ((π β§ π = π) β Ξ£π β ((π + 1)...π)(πΉβπ) = 0) |
70 | 4, 6 | ffvelcdmd 5653 |
. . . . 5
β’ (π β (seq1( + , πΉ)βπ) β β) |
71 | 70 | adantr 276 |
. . . 4
β’ ((π β§ π = π) β (seq1( + , πΉ)βπ) β β) |
72 | 71 | subidd 8256 |
. . 3
β’ ((π β§ π = π) β ((seq1( + , πΉ)βπ) β (seq1( + , πΉ)βπ)) = 0) |
73 | 57 | fveq2d 5520 |
. . . 4
β’ ((π β§ π = π) β (seq1( + , πΉ)βπ) = (seq1( + , πΉ)βπ)) |
74 | 73 | oveq1d 5890 |
. . 3
β’ ((π β§ π = π) β ((seq1( + , πΉ)βπ) β (seq1( + , πΉ)βπ)) = ((seq1( + , πΉ)βπ) β (seq1( + , πΉ)βπ))) |
75 | 69, 72, 74 | 3eqtr2rd 2217 |
. 2
β’ ((π β§ π = π) β ((seq1( + , πΉ)βπ) β (seq1( + , πΉ)βπ)) = Ξ£π β ((π + 1)...π)(πΉβπ)) |
76 | | eluzle 9540 |
. . . 4
β’ (π β
(β€β₯βπ) β π β€ π) |
77 | 23, 76 | syl 14 |
. . 3
β’ (π β π β€ π) |
78 | | zleloe 9300 |
. . . 4
β’ ((π β β€ β§ π β β€) β (π β€ π β (π < π β¨ π = π))) |
79 | 10, 25, 78 | syl2anc 411 |
. . 3
β’ (π β (π β€ π β (π < π β¨ π = π))) |
80 | 77, 79 | mpbid 147 |
. 2
β’ (π β (π < π β¨ π = π)) |
81 | 56, 75, 80 | mpjaodan 798 |
1
β’ (π β ((seq1( + , πΉ)βπ) β (seq1( + , πΉ)βπ)) = Ξ£π β ((π + 1)...π)(πΉβπ)) |