ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemseq GIF version

Theorem cvgratnnlemseq 11691
Description: Lemma for cvgratnn 11696. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemseq (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑖,𝐹,𝑘   𝑖,𝑀   𝑖,𝑁   𝜑,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝑀(𝑘)

Proof of Theorem cvgratnnlemseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 9637 . . . . . . 7 ℕ = (ℤ‘1)
2 1zzd 9353 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
3 cvgratnn.6 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
41, 2, 3serf 10575 . . . . . 6 (𝜑 → seq1( + , 𝐹):ℕ⟶ℂ)
54adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → seq1( + , 𝐹):ℕ⟶ℂ)
6 cvgratnn.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
76adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ ℕ)
85, 7ffvelcdmd 5698 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
9 eqid 2196 . . . . . . 7 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
106nnzd 9447 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
1110peano2zd 9451 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
12 fveq2 5558 . . . . . . . . 9 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
1312eleq1d 2265 . . . . . . . 8 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑥) ∈ ℂ))
143ralrimiva 2570 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
1514adantr 276 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
166peano2nnd 9005 . . . . . . . . 9 (𝜑 → (𝑀 + 1) ∈ ℕ)
17 eluznn 9674 . . . . . . . . 9 (((𝑀 + 1) ∈ ℕ ∧ 𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1816, 17sylan 283 . . . . . . . 8 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → 𝑥 ∈ ℕ)
1913, 15, 18rspcdva 2873 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ ℂ)
209, 11, 19serf 10575 . . . . . 6 (𝜑 → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2120adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → seq(𝑀 + 1)( + , 𝐹):(ℤ‘(𝑀 + 1))⟶ℂ)
2211adantr 276 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ∈ ℤ)
23 cvgratnn.n . . . . . . . 8 (𝜑𝑁 ∈ (ℤ𝑀))
24 eluzelz 9610 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2523, 24syl 14 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
2625adantr 276 . . . . . 6 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ ℤ)
27 zltp1le 9380 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2810, 25, 27syl2anc 411 . . . . . . 7 (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2928biimpa 296 . . . . . 6 ((𝜑𝑀 < 𝑁) → (𝑀 + 1) ≤ 𝑁)
30 eluz2 9607 . . . . . 6 (𝑁 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁))
3122, 26, 29, 30syl3anbrc 1183 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑁 ∈ (ℤ‘(𝑀 + 1)))
3221, 31ffvelcdmd 5698 . . . 4 ((𝜑𝑀 < 𝑁) → (seq(𝑀 + 1)( + , 𝐹)‘𝑁) ∈ ℂ)
338, 32pncan2d 8339 . . 3 ((𝜑𝑀 < 𝑁) → (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
34 addcl 8004 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
3534adantl 277 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
36 addass 8009 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
3736adantl 277 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
386, 1eleqtrdi 2289 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘1))
3938adantr 276 . . . . 5 ((𝜑𝑀 < 𝑁) → 𝑀 ∈ (ℤ‘1))
4014ad2antrr 488 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
41 simpr 110 . . . . . . 7 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ (ℤ‘1))
4241, 1eleqtrrdi 2290 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
4313, 40, 42rspcdva 2873 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑥 ∈ (ℤ‘1)) → (𝐹𝑥) ∈ ℂ)
4435, 37, 31, 39, 43seq3split 10580 . . . 4 ((𝜑𝑀 < 𝑁) → (seq1( + , 𝐹)‘𝑁) = ((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)))
4544oveq1d 5937 . . 3 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = (((seq1( + , 𝐹)‘𝑀) + (seq(𝑀 + 1)( + , 𝐹)‘𝑁)) − (seq1( + , 𝐹)‘𝑀)))
46 eqidd 2197 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) = (𝐹𝑖))
47 fveq2 5558 . . . . . 6 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
4847eleq1d 2265 . . . . 5 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑖) ∈ ℂ))
4914ad2antrr 488 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑘 ∈ ℕ (𝐹𝑘) ∈ ℂ)
5016ad2antrr 488 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ∈ ℕ)
51 simpr 110 . . . . . 6 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ (ℤ‘(𝑀 + 1)))
52 eluznn 9674 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5350, 51, 52syl2anc 411 . . . . 5 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → 𝑖 ∈ ℕ)
5448, 49, 53rspcdva 2873 . . . 4 (((𝜑𝑀 < 𝑁) ∧ 𝑖 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑖) ∈ ℂ)
5546, 31, 54fsum3ser 11562 . . 3 ((𝜑𝑀 < 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = (seq(𝑀 + 1)( + , 𝐹)‘𝑁))
5633, 45, 553eqtr4d 2239 . 2 ((𝜑𝑀 < 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
57 simpr 110 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 = 𝑁)
586nnred 9003 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
5958ltp1d 8957 . . . . . . . 8 (𝜑𝑀 < (𝑀 + 1))
6059adantr 276 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑀 < (𝑀 + 1))
6157, 60eqbrtrrd 4057 . . . . . 6 ((𝜑𝑀 = 𝑁) → 𝑁 < (𝑀 + 1))
6211adantr 276 . . . . . . 7 ((𝜑𝑀 = 𝑁) → (𝑀 + 1) ∈ ℤ)
6325adantr 276 . . . . . . 7 ((𝜑𝑀 = 𝑁) → 𝑁 ∈ ℤ)
64 fzn 10117 . . . . . . 7 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6562, 63, 64syl2anc 411 . . . . . 6 ((𝜑𝑀 = 𝑁) → (𝑁 < (𝑀 + 1) ↔ ((𝑀 + 1)...𝑁) = ∅))
6661, 65mpbid 147 . . . . 5 ((𝜑𝑀 = 𝑁) → ((𝑀 + 1)...𝑁) = ∅)
6766sumeq1d 11531 . . . 4 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = Σ𝑖 ∈ ∅ (𝐹𝑖))
68 sum0 11553 . . . 4 Σ𝑖 ∈ ∅ (𝐹𝑖) = 0
6967, 68eqtrdi 2245 . . 3 ((𝜑𝑀 = 𝑁) → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖) = 0)
704, 6ffvelcdmd 5698 . . . . 5 (𝜑 → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7170adantr 276 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) ∈ ℂ)
7271subidd 8325 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = 0)
7357fveq2d 5562 . . . 4 ((𝜑𝑀 = 𝑁) → (seq1( + , 𝐹)‘𝑀) = (seq1( + , 𝐹)‘𝑁))
7473oveq1d 5937 . . 3 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑀) − (seq1( + , 𝐹)‘𝑀)) = ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)))
7569, 72, 743eqtr2rd 2236 . 2 ((𝜑𝑀 = 𝑁) → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
76 eluzle 9613 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
7723, 76syl 14 . . 3 (𝜑𝑀𝑁)
78 zleloe 9373 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
7910, 25, 78syl2anc 411 . . 3 (𝜑 → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
8077, 79mpbid 147 . 2 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁))
8156, 75, 80mpjaodan 799 1 (𝜑 → ((seq1( + , 𝐹)‘𝑁) − (seq1( + , 𝐹)‘𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐹𝑖))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2167  wral 2475  c0 3450   class class class wbr 4033  wf 5254  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197  cn 8990  cz 9326  cuz 9601  ...cfz 10083  seqcseq 10539  abscabs 11162  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  cvgratnnlemrate  11695
  Copyright terms: Public domain W3C validator