ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  summodclem3 GIF version

Theorem summodclem3 11142
Description: Lemma for summodc 11145. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
Hypotheses
Ref Expression
isummo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
isummo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
isummolem3.5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
isummolem3.6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
isummolem3.7 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
isummolem3.g 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))
isummolem3.4 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))
Assertion
Ref Expression
summodclem3 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑛,𝐹   𝑘,𝑁,𝑛   𝜑,𝑘,𝑛   𝑘,𝑀,𝑛   𝐵,𝑛   𝑘,𝐾,𝑛   𝑓,𝑘,𝑛
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓,𝑘)   𝐹(𝑓,𝑘)   𝐺(𝑓,𝑘,𝑛)   𝐻(𝑓,𝑘,𝑛)   𝐾(𝑓)   𝑀(𝑓)   𝑁(𝑓)

Proof of Theorem summodclem3
Dummy variables 𝑖 𝑗 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 7738 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ)
21adantl 275 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ)
3 addcom 7892 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
43adantl 275 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚))
5 addass 7743 . . . 4 ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
65adantl 275 . . 3 ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦)))
7 isummolem3.5 . . . . 5 (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
87simpld 111 . . . 4 (𝜑𝑀 ∈ ℕ)
9 nnuz 9354 . . . 4 ℕ = (ℤ‘1)
108, 9eleqtrdi 2230 . . 3 (𝜑𝑀 ∈ (ℤ‘1))
11 isummolem3.6 . . . . . 6 (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)
12 f1ocnv 5373 . . . . . 6 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:𝐴1-1-onto→(1...𝑀))
1311, 12syl 14 . . . . 5 (𝜑𝑓:𝐴1-1-onto→(1...𝑀))
14 isummolem3.7 . . . . 5 (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)
15 f1oco 5383 . . . . 5 ((𝑓:𝐴1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto𝐴) → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
1613, 14, 15syl2anc 408 . . . 4 (𝜑 → (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀))
17 isummo.1 . . . . . . . 8 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
18 isummo.2 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1917, 18, 7, 11, 14isummolemnm 11141 . . . . . . 7 (𝜑𝑁 = 𝑀)
2019eqcomd 2143 . . . . . 6 (𝜑𝑀 = 𝑁)
2120oveq2d 5783 . . . . 5 (𝜑 → (1...𝑀) = (1...𝑁))
22 f1oeq2 5352 . . . . 5 ((1...𝑀) = (1...𝑁) → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
2321, 22syl 14 . . . 4 (𝜑 → ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (𝑓𝐾):(1...𝑁)–1-1-onto→(1...𝑀)))
2416, 23mpbird 166 . . 3 (𝜑 → (𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀))
25 elnnuz 9355 . . . 4 (𝑚 ∈ ℕ ↔ 𝑚 ∈ (ℤ‘1))
26 isummolem3.g . . . . . . 7 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))
27 breq1 3927 . . . . . . . 8 (𝑛 = 𝑚 → (𝑛𝑀𝑚𝑀))
28 fveq2 5414 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑓𝑛) = (𝑓𝑚))
2928csbeq1d 3005 . . . . . . . 8 (𝑛 = 𝑚(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑚) / 𝑘𝐵)
3027, 29ifbieq1d 3489 . . . . . . 7 (𝑛 = 𝑚 → if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0) = if(𝑚𝑀, (𝑓𝑚) / 𝑘𝐵, 0))
31 simplr 519 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ)
32 elfzle2 9801 . . . . . . . . . 10 (𝑚 ∈ (1...𝑀) → 𝑚𝑀)
3332adantl 275 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚𝑀)
3433iftrued 3476 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚𝑀, (𝑓𝑚) / 𝑘𝐵, 0) = (𝑓𝑚) / 𝑘𝐵)
35 f1of 5360 . . . . . . . . . . . 12 (𝑓:(1...𝑀)–1-1-onto𝐴𝑓:(1...𝑀)⟶𝐴)
3611, 35syl 14 . . . . . . . . . . 11 (𝜑𝑓:(1...𝑀)⟶𝐴)
3736ffvelrnda 5548 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) ∈ 𝐴)
3818ralrimiva 2503 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
3938adantr 274 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
40 nfcsb1v 3030 . . . . . . . . . . . 12 𝑘(𝑓𝑚) / 𝑘𝐵
4140nfel1 2290 . . . . . . . . . . 11 𝑘(𝑓𝑚) / 𝑘𝐵 ∈ ℂ
42 csbeq1a 3007 . . . . . . . . . . . 12 (𝑘 = (𝑓𝑚) → 𝐵 = (𝑓𝑚) / 𝑘𝐵)
4342eleq1d 2206 . . . . . . . . . . 11 (𝑘 = (𝑓𝑚) → (𝐵 ∈ ℂ ↔ (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4441, 43rspc 2778 . . . . . . . . . 10 ((𝑓𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ))
4537, 39, 44sylc 62 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...𝑀)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
4645adantlr 468 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝑓𝑚) / 𝑘𝐵 ∈ ℂ)
4734, 46eqeltrd 2214 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚𝑀, (𝑓𝑚) / 𝑘𝐵, 0) ∈ ℂ)
4826, 30, 31, 47fvmptd3 5507 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺𝑚) = if(𝑚𝑀, (𝑓𝑚) / 𝑘𝐵, 0))
4948, 47eqeltrd 2214 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺𝑚) ∈ ℂ)
50 simplr 519 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → 𝑚 ∈ ℕ)
518ad2antrr 479 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℕ)
5251nnzd 9165 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℤ)
53 eluzp1l 9343 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑚)
5452, 53sylancom 416 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑚)
5550nnzd 9165 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → 𝑚 ∈ ℤ)
56 zltnle 9093 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 < 𝑚 ↔ ¬ 𝑚𝑀))
5752, 55, 56syl2anc 408 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 < 𝑚 ↔ ¬ 𝑚𝑀))
5854, 57mpbid 146 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → ¬ 𝑚𝑀)
5958iffalsed 3479 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → if(𝑚𝑀, (𝑓𝑚) / 𝑘𝐵, 0) = 0)
60 0cn 7751 . . . . . . . 8 0 ∈ ℂ
6159, 60eqeltrdi 2228 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → if(𝑚𝑀, (𝑓𝑚) / 𝑘𝐵, 0) ∈ ℂ)
6226, 30, 50, 61fvmptd3 5507 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → (𝐺𝑚) = if(𝑚𝑀, (𝑓𝑚) / 𝑘𝐵, 0))
6362, 61eqeltrd 2214 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → (𝐺𝑚) ∈ ℂ)
64 nnsplit 9907 . . . . . . . . 9 (𝑀 ∈ ℕ → ℕ = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
658, 64syl 14 . . . . . . . 8 (𝜑 → ℕ = ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
6665eleq2d 2207 . . . . . . 7 (𝜑 → (𝑚 ∈ ℕ ↔ 𝑚 ∈ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1)))))
6766biimpa 294 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))))
68 elun 3212 . . . . . 6 (𝑚 ∈ ((1...𝑀) ∪ (ℤ‘(𝑀 + 1))) ↔ (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ‘(𝑀 + 1))))
6967, 68sylib 121 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ‘(𝑀 + 1))))
7049, 63, 69mpjaodan 787 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐺𝑚) ∈ ℂ)
7125, 70sylan2br 286 . . 3 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐺𝑚) ∈ ℂ)
7219oveq2d 5783 . . . . . . . . 9 (𝜑 → (1...𝑁) = (1...𝑀))
7372eleq2d 2207 . . . . . . . 8 (𝜑 → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀)))
7473adantr 274 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀)))
7574pm5.32i 449 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) ↔ ((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)))
76 isummolem3.4 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))
77 breq1 3927 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛𝑁𝑚𝑁))
78 fveq2 5414 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐾𝑛) = (𝐾𝑚))
7978csbeq1d 3005 . . . . . . . . 9 (𝑛 = 𝑚(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑚) / 𝑘𝐵)
8077, 79ifbieq1d 3489 . . . . . . . 8 (𝑛 = 𝑚 → if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
81 simplr 519 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ)
82 elfzle2 9801 . . . . . . . . . . 11 (𝑚 ∈ (1...𝑁) → 𝑚𝑁)
8382adantl 275 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚𝑁)
8483iftrued 3476 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) = (𝐾𝑚) / 𝑘𝐵)
85 f1of 5360 . . . . . . . . . . . . 13 (𝐾:(1...𝑁)–1-1-onto𝐴𝐾:(1...𝑁)⟶𝐴)
8614, 85syl 14 . . . . . . . . . . . 12 (𝜑𝐾:(1...𝑁)⟶𝐴)
8786ffvelrnda 5548 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...𝑁)) → (𝐾𝑚) ∈ 𝐴)
8838adantr 274 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...𝑁)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
89 nfcsb1v 3030 . . . . . . . . . . . . 13 𝑘(𝐾𝑚) / 𝑘𝐵
9089nfel1 2290 . . . . . . . . . . . 12 𝑘(𝐾𝑚) / 𝑘𝐵 ∈ ℂ
91 csbeq1a 3007 . . . . . . . . . . . . 13 (𝑘 = (𝐾𝑚) → 𝐵 = (𝐾𝑚) / 𝑘𝐵)
9291eleq1d 2206 . . . . . . . . . . . 12 (𝑘 = (𝐾𝑚) → (𝐵 ∈ ℂ ↔ (𝐾𝑚) / 𝑘𝐵 ∈ ℂ))
9390, 92rspc 2778 . . . . . . . . . . 11 ((𝐾𝑚) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ))
9487, 88, 93sylc 62 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...𝑁)) → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ)
9594adantlr 468 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐾𝑚) / 𝑘𝐵 ∈ ℂ)
9684, 95eqeltrd 2214 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ)
9776, 80, 81, 96fvmptd3 5507 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻𝑚) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
9897, 96eqeltrd 2214 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻𝑚) ∈ ℂ)
9975, 98sylbir 134 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐻𝑚) ∈ ℂ)
10019breq2d 3936 . . . . . . . . . . . 12 (𝜑 → (𝑚𝑁𝑚𝑀))
101100notbid 656 . . . . . . . . . . 11 (𝜑 → (¬ 𝑚𝑁 ↔ ¬ 𝑚𝑀))
102101ad2antrr 479 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → (¬ 𝑚𝑁 ↔ ¬ 𝑚𝑀))
10358, 102mpbird 166 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → ¬ 𝑚𝑁)
104103iffalsed 3479 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) = 0)
105104, 60eqeltrdi 2228 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0) ∈ ℂ)
10676, 80, 50, 105fvmptd3 5507 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → (𝐻𝑚) = if(𝑚𝑁, (𝐾𝑚) / 𝑘𝐵, 0))
107106, 105eqeltrd 2214 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ‘(𝑀 + 1))) → (𝐻𝑚) ∈ ℂ)
10899, 107, 69mpjaodan 787 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝐻𝑚) ∈ ℂ)
10925, 108sylan2br 286 . . 3 ((𝜑𝑚 ∈ (ℤ‘1)) → (𝐻𝑚) ∈ ℂ)
110 f1oeq2 5352 . . . . . . . . . . 11 ((1...𝑀) = (1...𝑁) → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
11121, 110syl 14 . . . . . . . . . 10 (𝜑 → (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑁)–1-1-onto𝐴))
11214, 111mpbird 166 . . . . . . . . 9 (𝜑𝐾:(1...𝑀)–1-1-onto𝐴)
113 f1of 5360 . . . . . . . . 9 (𝐾:(1...𝑀)–1-1-onto𝐴𝐾:(1...𝑀)⟶𝐴)
114112, 113syl 14 . . . . . . . 8 (𝜑𝐾:(1...𝑀)⟶𝐴)
115 fvco3 5485 . . . . . . . 8 ((𝐾:(1...𝑀)⟶𝐴𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
116114, 115sylan 281 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) = (𝑓‘(𝐾𝑖)))
117116fveq2d 5418 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘((𝑓𝐾)‘𝑖)) = (𝑓‘(𝑓‘(𝐾𝑖))))
11811adantr 274 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto𝐴)
119114ffvelrnda 5548 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) ∈ 𝐴)
120 f1ocnvfv2 5672 . . . . . . 7 ((𝑓:(1...𝑀)–1-1-onto𝐴 ∧ (𝐾𝑖) ∈ 𝐴) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
121118, 119, 120syl2anc 408 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑓‘(𝑓‘(𝐾𝑖))) = (𝐾𝑖))
122117, 121eqtr2d 2171 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) = (𝑓‘((𝑓𝐾)‘𝑖)))
123122csbeq1d 3005 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
124 elfznn 9827 . . . . . 6 (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ)
125 elfzle2 9801 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
126125adantl 275 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖𝑀)
12720breq2d 3936 . . . . . . . . . 10 (𝜑 → (𝑖𝑀𝑖𝑁))
128127adantr 274 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑖𝑀𝑖𝑁))
129126, 128mpbid 146 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖𝑁)
130129iftrued 3476 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → if(𝑖𝑁, (𝐾𝑖) / 𝑘𝐵, 0) = (𝐾𝑖) / 𝑘𝐵)
13138adantr 274 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
132 nfcsb1v 3030 . . . . . . . . . 10 𝑘(𝐾𝑖) / 𝑘𝐵
133132nfel1 2290 . . . . . . . . 9 𝑘(𝐾𝑖) / 𝑘𝐵 ∈ ℂ
134 csbeq1a 3007 . . . . . . . . . 10 (𝑘 = (𝐾𝑖) → 𝐵 = (𝐾𝑖) / 𝑘𝐵)
135134eleq1d 2206 . . . . . . . . 9 (𝑘 = (𝐾𝑖) → (𝐵 ∈ ℂ ↔ (𝐾𝑖) / 𝑘𝐵 ∈ ℂ))
136133, 135rspc 2778 . . . . . . . 8 ((𝐾𝑖) ∈ 𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → (𝐾𝑖) / 𝑘𝐵 ∈ ℂ))
137119, 131, 136sylc 62 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐾𝑖) / 𝑘𝐵 ∈ ℂ)
138130, 137eqeltrd 2214 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → if(𝑖𝑁, (𝐾𝑖) / 𝑘𝐵, 0) ∈ ℂ)
139 breq1 3927 . . . . . . . 8 (𝑛 = 𝑖 → (𝑛𝑁𝑖𝑁))
140 fveq2 5414 . . . . . . . . 9 (𝑛 = 𝑖 → (𝐾𝑛) = (𝐾𝑖))
141140csbeq1d 3005 . . . . . . . 8 (𝑛 = 𝑖(𝐾𝑛) / 𝑘𝐵 = (𝐾𝑖) / 𝑘𝐵)
142139, 141ifbieq1d 3489 . . . . . . 7 (𝑛 = 𝑖 → if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0) = if(𝑖𝑁, (𝐾𝑖) / 𝑘𝐵, 0))
143142, 76fvmptg 5490 . . . . . 6 ((𝑖 ∈ ℕ ∧ if(𝑖𝑁, (𝐾𝑖) / 𝑘𝐵, 0) ∈ ℂ) → (𝐻𝑖) = if(𝑖𝑁, (𝐾𝑖) / 𝑘𝐵, 0))
144124, 138, 143syl2an2 583 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = if(𝑖𝑁, (𝐾𝑖) / 𝑘𝐵, 0))
145144, 130eqtrd 2170 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐾𝑖) / 𝑘𝐵)
146 breq1 3927 . . . . . . 7 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑛𝑀 ↔ ((𝑓𝐾)‘𝑖) ≤ 𝑀))
147 fveq2 5414 . . . . . . . 8 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) = (𝑓‘((𝑓𝐾)‘𝑖)))
148147csbeq1d 3005 . . . . . . 7 (𝑛 = ((𝑓𝐾)‘𝑖) → (𝑓𝑛) / 𝑘𝐵 = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
149146, 148ifbieq1d 3489 . . . . . 6 (𝑛 = ((𝑓𝐾)‘𝑖) → if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0) = if(((𝑓𝐾)‘𝑖) ≤ 𝑀, (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 0))
150 f1of 5360 . . . . . . . . 9 ((𝑓𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
15124, 150syl 14 . . . . . . . 8 (𝜑 → (𝑓𝐾):(1...𝑀)⟶(1...𝑀))
152151ffvelrnda 5548 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ (1...𝑀))
153 elfznn 9827 . . . . . . 7 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
154152, 153syl 14 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ∈ ℕ)
155 elfzle2 9801 . . . . . . . . . 10 (((𝑓𝐾)‘𝑖) ∈ (1...𝑀) → ((𝑓𝐾)‘𝑖) ≤ 𝑀)
156152, 155syl 14 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑓𝐾)‘𝑖) ≤ 𝑀)
157156iftrued 3476 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → if(((𝑓𝐾)‘𝑖) ≤ 𝑀, (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 0) = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
158157, 123eqtr4d 2173 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → if(((𝑓𝐾)‘𝑖) ≤ 𝑀, (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 0) = (𝐾𝑖) / 𝑘𝐵)
159158, 137eqeltrd 2214 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → if(((𝑓𝐾)‘𝑖) ≤ 𝑀, (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 0) ∈ ℂ)
16026, 149, 154, 159fvmptd3 5507 . . . . 5 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = if(((𝑓𝐾)‘𝑖) ≤ 𝑀, (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵, 0))
161160, 157eqtrd 2170 . . . 4 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘((𝑓𝐾)‘𝑖)) = (𝑓‘((𝑓𝐾)‘𝑖)) / 𝑘𝐵)
162123, 145, 1613eqtr4d 2180 . . 3 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻𝑖) = (𝐺‘((𝑓𝐾)‘𝑖)))
1632, 4, 6, 10, 24, 71, 109, 162seq3f1o 10270 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀))
16420fveq2d 5418 . 2 (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
165163, 164eqtr3d 2172 1 (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  w3a 962   = wceq 1331  wcel 1480  wral 2414  csb 2998  cun 3064  ifcif 3469   class class class wbr 3924  cmpt 3984  ccnv 4533  ccom 4538  wf 5114  1-1-ontowf1o 5117  cfv 5118  (class class class)co 5767  cc 7611  0cc0 7613  1c1 7614   + caddc 7616   < clt 7793  cle 7794  cn 8713  cz 9047  cuz 9319  ...cfz 9783  seqcseq 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-1o 6306  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-fzo 9913  df-seqfrec 10212  df-ihash 10515
This theorem is referenced by:  summodclem2a  11143  summodc  11145
  Copyright terms: Public domain W3C validator