| Step | Hyp | Ref
 | Expression | 
| 1 |   | addcl 8004 | 
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ) | 
| 2 | 1 | adantl 277 | 
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ) | 
| 3 |   | addcom 8163 | 
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚)) | 
| 4 | 3 | adantl 277 | 
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚)) | 
| 5 |   | addass 8009 | 
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦))) | 
| 6 | 5 | adantl 277 | 
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦))) | 
| 7 |   | isummolem3.5 | 
. . . . 5
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) | 
| 8 | 7 | simpld 112 | 
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 9 |   | nnuz 9637 | 
. . . 4
⊢ ℕ =
(ℤ≥‘1) | 
| 10 | 8, 9 | eleqtrdi 2289 | 
. . 3
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) | 
| 11 |   | isummolem3.6 | 
. . . . . 6
⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴) | 
| 12 |   | f1ocnv 5517 | 
. . . . . 6
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) | 
| 13 | 11, 12 | syl 14 | 
. . . . 5
⊢ (𝜑 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) | 
| 14 |   | isummolem3.7 | 
. . . . 5
⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) | 
| 15 |   | f1oco 5527 | 
. . . . 5
⊢ ((◡𝑓:𝐴–1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto→𝐴) → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) | 
| 16 | 13, 14, 15 | syl2anc 411 | 
. . . 4
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) | 
| 17 | 7, 11, 14 | nnf1o 11541 | 
. . . . . . 7
⊢ (𝜑 → 𝑁 = 𝑀) | 
| 18 | 17 | eqcomd 2202 | 
. . . . . 6
⊢ (𝜑 → 𝑀 = 𝑁) | 
| 19 | 18 | oveq2d 5938 | 
. . . . 5
⊢ (𝜑 → (1...𝑀) = (1...𝑁)) | 
| 20 |   | f1oeq2 5493 | 
. . . . 5
⊢
((1...𝑀) =
(1...𝑁) → ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀))) | 
| 21 | 19, 20 | syl 14 | 
. . . 4
⊢ (𝜑 → ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀))) | 
| 22 | 16, 21 | mpbird 167 | 
. . 3
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀)) | 
| 23 |   | elnnuz 9638 | 
. . . 4
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) | 
| 24 |   | isummolem3.g | 
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) | 
| 25 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑛 ≤ 𝑀 ↔ 𝑚 ≤ 𝑀)) | 
| 26 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) | 
| 27 | 26 | csbeq1d 3091 | 
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) | 
| 28 | 25, 27 | ifbieq1d 3583 | 
. . . . . . 7
⊢ (𝑛 = 𝑚 → if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) | 
| 29 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ) | 
| 30 |   | elfzle2 10103 | 
. . . . . . . . . 10
⊢ (𝑚 ∈ (1...𝑀) → 𝑚 ≤ 𝑀) | 
| 31 | 30 | adantl 277 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚 ≤ 𝑀) | 
| 32 | 31 | iftrued 3568 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) | 
| 33 |   | f1of 5504 | 
. . . . . . . . . . . 12
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → 𝑓:(1...𝑀)⟶𝐴) | 
| 34 | 11, 33 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑓:(1...𝑀)⟶𝐴) | 
| 35 | 34 | ffvelcdmda 5697 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → (𝑓‘𝑚) ∈ 𝐴) | 
| 36 |   | isummo.2 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | 
| 37 | 36 | ralrimiva 2570 | 
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 38 | 37 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 39 |   | nfcsb1v 3117 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 | 
| 40 | 39 | nfel1 2350 | 
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ | 
| 41 |   | csbeq1a 3093 | 
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑚) → 𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) | 
| 42 | 41 | eleq1d 2265 | 
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 43 | 40, 42 | rspc 2862 | 
. . . . . . . . . 10
⊢ ((𝑓‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 44 | 35, 38, 43 | sylc 62 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) | 
| 45 | 44 | adantlr 477 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) | 
| 46 | 32, 45 | eqeltrd 2273 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) | 
| 47 | 24, 28, 29, 46 | fvmptd3 5655 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺‘𝑚) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) | 
| 48 | 47, 46 | eqeltrd 2273 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺‘𝑚) ∈ ℂ) | 
| 49 |   | simplr 528 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑚 ∈
ℕ) | 
| 50 | 8 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℕ) | 
| 51 | 50 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℤ) | 
| 52 |   | eluzp1l 9626 | 
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑚) | 
| 53 | 51, 52 | sylancom 420 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑚) | 
| 54 | 49 | nnzd 9447 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑚 ∈
ℤ) | 
| 55 |   | zltnle 9372 | 
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑀)) | 
| 56 | 51, 54, 55 | syl2anc 411 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑀)) | 
| 57 | 53, 56 | mpbid 147 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → ¬ 𝑚 ≤ 𝑀) | 
| 58 | 57 | iffalsed 3571 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) = 0) | 
| 59 |   | 0cn 8018 | 
. . . . . . . 8
⊢ 0 ∈
ℂ | 
| 60 | 58, 59 | eqeltrdi 2287 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) | 
| 61 | 24, 28, 49, 60 | fvmptd3 5655 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐺‘𝑚) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) | 
| 62 | 61, 60 | eqeltrd 2273 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐺‘𝑚) ∈ ℂ) | 
| 63 |   | nnsplit 10212 | 
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → ℕ =
((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) | 
| 64 | 8, 63 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → ℕ = ((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) | 
| 65 | 64 | eleq2d 2266 | 
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ ℕ ↔ 𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1))))) | 
| 66 | 65 | biimpa 296 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) | 
| 67 |   | elun 3304 | 
. . . . . 6
⊢ (𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ≥‘(𝑀 + 1)))) | 
| 68 | 66, 67 | sylib 122 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ≥‘(𝑀 + 1)))) | 
| 69 | 48, 62, 68 | mpjaodan 799 | 
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ ℂ) | 
| 70 | 23, 69 | sylan2br 288 | 
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐺‘𝑚) ∈
ℂ) | 
| 71 | 17 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) = (1...𝑀)) | 
| 72 | 71 | eleq2d 2266 | 
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀))) | 
| 73 | 72 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀))) | 
| 74 | 73 | pm5.32i 454 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) ↔ ((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀))) | 
| 75 |   | isummolem3.4 | 
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) | 
| 76 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) | 
| 77 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐾‘𝑛) = (𝐾‘𝑚)) | 
| 78 | 77 | csbeq1d 3091 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ⦋(𝐾‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) | 
| 79 | 76, 78 | ifbieq1d 3583 | 
. . . . . . . 8
⊢ (𝑛 = 𝑚 → if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) | 
| 80 |   | simplr 528 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ) | 
| 81 |   | elfzle2 10103 | 
. . . . . . . . . . 11
⊢ (𝑚 ∈ (1...𝑁) → 𝑚 ≤ 𝑁) | 
| 82 | 81 | adantl 277 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ≤ 𝑁) | 
| 83 | 82 | iftrued 3568 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) | 
| 84 |   | f1of 5504 | 
. . . . . . . . . . . . 13
⊢ (𝐾:(1...𝑁)–1-1-onto→𝐴 → 𝐾:(1...𝑁)⟶𝐴) | 
| 85 | 14, 84 | syl 14 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾:(1...𝑁)⟶𝐴) | 
| 86 | 85 | ffvelcdmda 5697 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (𝐾‘𝑚) ∈ 𝐴) | 
| 87 | 37 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 88 |   | nfcsb1v 3117 | 
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 | 
| 89 | 88 | nfel1 2350 | 
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ | 
| 90 |   | csbeq1a 3093 | 
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐾‘𝑚) → 𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) | 
| 91 | 90 | eleq1d 2265 | 
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐾‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 92 | 89, 91 | rspc 2862 | 
. . . . . . . . . . 11
⊢ ((𝐾‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 93 | 86, 87, 92 | sylc 62 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) | 
| 94 | 93 | adantlr 477 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) | 
| 95 | 83, 94 | eqeltrd 2273 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) | 
| 96 | 75, 79, 80, 95 | fvmptd3 5655 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻‘𝑚) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) | 
| 97 | 96, 95 | eqeltrd 2273 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻‘𝑚) ∈ ℂ) | 
| 98 | 74, 97 | sylbir 135 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐻‘𝑚) ∈ ℂ) | 
| 99 | 17 | breq2d 4045 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑚 ≤ 𝑁 ↔ 𝑚 ≤ 𝑀)) | 
| 100 | 99 | notbid 668 | 
. . . . . . . . . . 11
⊢ (𝜑 → (¬ 𝑚 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑀)) | 
| 101 | 100 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (¬ 𝑚 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑀)) | 
| 102 | 57, 101 | mpbird 167 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → ¬ 𝑚 ≤ 𝑁) | 
| 103 | 102 | iffalsed 3571 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) = 0) | 
| 104 | 103, 59 | eqeltrdi 2287 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) | 
| 105 | 75, 79, 49, 104 | fvmptd3 5655 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐻‘𝑚) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) | 
| 106 | 105, 104 | eqeltrd 2273 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐻‘𝑚) ∈ ℂ) | 
| 107 | 98, 106, 68 | mpjaodan 799 | 
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℂ) | 
| 108 | 23, 107 | sylan2br 288 | 
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐻‘𝑚) ∈
ℂ) | 
| 109 |   | f1oeq2 5493 | 
. . . . . . . . . . 11
⊢
((1...𝑀) =
(1...𝑁) → (𝐾:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐾:(1...𝑁)–1-1-onto→𝐴)) | 
| 110 | 19, 109 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝐾:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐾:(1...𝑁)–1-1-onto→𝐴)) | 
| 111 | 14, 110 | mpbird 167 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐾:(1...𝑀)–1-1-onto→𝐴) | 
| 112 |   | f1of 5504 | 
. . . . . . . . 9
⊢ (𝐾:(1...𝑀)–1-1-onto→𝐴 → 𝐾:(1...𝑀)⟶𝐴) | 
| 113 | 111, 112 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐾:(1...𝑀)⟶𝐴) | 
| 114 |   | fvco3 5632 | 
. . . . . . . 8
⊢ ((𝐾:(1...𝑀)⟶𝐴 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) | 
| 115 | 113, 114 | sylan 283 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) | 
| 116 | 115 | fveq2d 5562 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) = (𝑓‘(◡𝑓‘(𝐾‘𝑖)))) | 
| 117 | 11 | adantr 276 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto→𝐴) | 
| 118 | 113 | ffvelcdmda 5697 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) ∈ 𝐴) | 
| 119 |   | f1ocnvfv2 5825 | 
. . . . . . 7
⊢ ((𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (𝐾‘𝑖) ∈ 𝐴) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) | 
| 120 | 117, 118,
119 | syl2anc 411 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) | 
| 121 | 116, 120 | eqtr2d 2230 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) = (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖))) | 
| 122 | 121 | csbeq1d 3091 | 
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) | 
| 123 |   | elfznn 10129 | 
. . . . . 6
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ) | 
| 124 |   | elfzle2 10103 | 
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ≤ 𝑀) | 
| 125 | 124 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ 𝑀) | 
| 126 | 18 | breq2d 4045 | 
. . . . . . . . . 10
⊢ (𝜑 → (𝑖 ≤ 𝑀 ↔ 𝑖 ≤ 𝑁)) | 
| 127 | 126 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ≤ 𝑀 ↔ 𝑖 ≤ 𝑁)) | 
| 128 | 125, 127 | mpbid 147 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ 𝑁) | 
| 129 | 128 | iftrued 3568 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) | 
| 130 | 37 | adantr 276 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) | 
| 131 |   | nfcsb1v 3117 | 
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 | 
| 132 | 131 | nfel1 2350 | 
. . . . . . . . 9
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ | 
| 133 |   | csbeq1a 3093 | 
. . . . . . . . . 10
⊢ (𝑘 = (𝐾‘𝑖) → 𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) | 
| 134 | 133 | eleq1d 2265 | 
. . . . . . . . 9
⊢ (𝑘 = (𝐾‘𝑖) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 135 | 132, 134 | rspc 2862 | 
. . . . . . . 8
⊢ ((𝐾‘𝑖) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) | 
| 136 | 118, 130,
135 | sylc 62 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ) | 
| 137 | 129, 136 | eqeltrd 2273 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) ∈ ℂ) | 
| 138 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑛 = 𝑖 → (𝑛 ≤ 𝑁 ↔ 𝑖 ≤ 𝑁)) | 
| 139 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (𝐾‘𝑛) = (𝐾‘𝑖)) | 
| 140 | 139 | csbeq1d 3091 | 
. . . . . . . 8
⊢ (𝑛 = 𝑖 → ⦋(𝐾‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) | 
| 141 | 138, 140 | ifbieq1d 3583 | 
. . . . . . 7
⊢ (𝑛 = 𝑖 → if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) | 
| 142 | 141, 75 | fvmptg 5637 | 
. . . . . 6
⊢ ((𝑖 ∈ ℕ ∧ if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐻‘𝑖) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) | 
| 143 | 123, 137,
142 | syl2an2 594 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) | 
| 144 | 143, 129 | eqtrd 2229 | 
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) | 
| 145 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑛 ≤ 𝑀 ↔ ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀)) | 
| 146 |   | fveq2 5558 | 
. . . . . . . 8
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑓‘𝑛) = (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖))) | 
| 147 | 146 | csbeq1d 3091 | 
. . . . . . 7
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) | 
| 148 | 145, 147 | ifbieq1d 3583 | 
. . . . . 6
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0)) | 
| 149 |   | f1of 5504 | 
. . . . . . . . 9
⊢ ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) | 
| 150 | 22, 149 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) | 
| 151 | 150 | ffvelcdmda 5697 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀)) | 
| 152 |   | elfznn 10129 | 
. . . . . . 7
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) | 
| 153 | 151, 152 | syl 14 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) | 
| 154 |   | elfzle2 10103 | 
. . . . . . . . . 10
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) | 
| 155 | 151, 154 | syl 14 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) | 
| 156 | 155 | iftrued 3568 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) | 
| 157 | 156, 122 | eqtr4d 2232 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) | 
| 158 | 157, 136 | eqeltrd 2273 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) ∈ ℂ) | 
| 159 | 24, 148, 153, 158 | fvmptd3 5655 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0)) | 
| 160 | 159, 156 | eqtrd 2229 | 
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) | 
| 161 | 122, 144,
160 | 3eqtr4d 2239 | 
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖))) | 
| 162 | 2, 4, 6, 10, 22, 70, 108, 161 | seq3f1o 10609 | 
. 2
⊢ (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀)) | 
| 163 | 18 | fveq2d 5562 | 
. 2
⊢ (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) | 
| 164 | 162, 163 | eqtr3d 2231 | 
1
⊢ (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) |