| Step | Hyp | Ref
| Expression |
| 1 | | addcl 8021 |
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) ∈ ℂ) |
| 2 | 1 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) ∈ ℂ) |
| 3 | | addcom 8180 |
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑚 + 𝑗) = (𝑗 + 𝑚)) |
| 4 | 3 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ)) → (𝑚 + 𝑗) = (𝑗 + 𝑚)) |
| 5 | | addass 8026 |
. . . 4
⊢ ((𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦))) |
| 6 | 5 | adantl 277 |
. . 3
⊢ ((𝜑 ∧ (𝑚 ∈ ℂ ∧ 𝑗 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑚 + 𝑗) + 𝑦) = (𝑚 + (𝑗 + 𝑦))) |
| 7 | | isummolem3.5 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
| 8 | 7 | simpld 112 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 9 | | nnuz 9654 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 10 | 8, 9 | eleqtrdi 2289 |
. . 3
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
| 11 | | isummolem3.6 |
. . . . . 6
⊢ (𝜑 → 𝑓:(1...𝑀)–1-1-onto→𝐴) |
| 12 | | f1ocnv 5520 |
. . . . . 6
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) |
| 13 | 11, 12 | syl 14 |
. . . . 5
⊢ (𝜑 → ◡𝑓:𝐴–1-1-onto→(1...𝑀)) |
| 14 | | isummolem3.7 |
. . . . 5
⊢ (𝜑 → 𝐾:(1...𝑁)–1-1-onto→𝐴) |
| 15 | | f1oco 5530 |
. . . . 5
⊢ ((◡𝑓:𝐴–1-1-onto→(1...𝑀) ∧ 𝐾:(1...𝑁)–1-1-onto→𝐴) → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) |
| 16 | 13, 14, 15 | syl2anc 411 |
. . . 4
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀)) |
| 17 | 7, 11, 14 | nnf1o 11558 |
. . . . . . 7
⊢ (𝜑 → 𝑁 = 𝑀) |
| 18 | 17 | eqcomd 2202 |
. . . . . 6
⊢ (𝜑 → 𝑀 = 𝑁) |
| 19 | 18 | oveq2d 5941 |
. . . . 5
⊢ (𝜑 → (1...𝑀) = (1...𝑁)) |
| 20 | | f1oeq2 5496 |
. . . . 5
⊢
((1...𝑀) =
(1...𝑁) → ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀))) |
| 21 | 19, 20 | syl 14 |
. . . 4
⊢ (𝜑 → ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) ↔ (◡𝑓 ∘ 𝐾):(1...𝑁)–1-1-onto→(1...𝑀))) |
| 22 | 16, 21 | mpbird 167 |
. . 3
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀)) |
| 23 | | elnnuz 9655 |
. . . 4
⊢ (𝑚 ∈ ℕ ↔ 𝑚 ∈
(ℤ≥‘1)) |
| 24 | | isummolem3.g |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0)) |
| 25 | | breq1 4037 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (𝑛 ≤ 𝑀 ↔ 𝑚 ≤ 𝑀)) |
| 26 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑓‘𝑛) = (𝑓‘𝑚)) |
| 27 | 26 | csbeq1d 3091 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 28 | 25, 27 | ifbieq1d 3584 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) |
| 29 | | simplr 528 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚 ∈ ℕ) |
| 30 | | elfzle2 10120 |
. . . . . . . . . 10
⊢ (𝑚 ∈ (1...𝑀) → 𝑚 ≤ 𝑀) |
| 31 | 30 | adantl 277 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → 𝑚 ≤ 𝑀) |
| 32 | 31 | iftrued 3569 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 33 | | f1of 5507 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...𝑀)–1-1-onto→𝐴 → 𝑓:(1...𝑀)⟶𝐴) |
| 34 | 11, 33 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑓:(1...𝑀)⟶𝐴) |
| 35 | 34 | ffvelcdmda 5700 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → (𝑓‘𝑚) ∈ 𝐴) |
| 36 | | isummo.2 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 37 | 36 | ralrimiva 2570 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 38 | 37 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 39 | | nfcsb1v 3117 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 |
| 40 | 39 | nfel1 2350 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ |
| 41 | | csbeq1a 3093 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘𝑚) → 𝐵 = ⦋(𝑓‘𝑚) / 𝑘⦌𝐵) |
| 42 | 41 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑓‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 43 | 40, 42 | rspc 2862 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 44 | 35, 38, 43 | sylc 62 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑀)) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 45 | 44 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → ⦋(𝑓‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 46 | 32, 45 | eqeltrd 2273 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 47 | 24, 28, 29, 46 | fvmptd3 5658 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺‘𝑚) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) |
| 48 | 47, 46 | eqeltrd 2273 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐺‘𝑚) ∈ ℂ) |
| 49 | | simplr 528 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑚 ∈
ℕ) |
| 50 | 8 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℕ) |
| 51 | 50 | nnzd 9464 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℤ) |
| 52 | | eluzp1l 9643 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑚) |
| 53 | 51, 52 | sylancom 420 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑚) |
| 54 | 49 | nnzd 9464 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → 𝑚 ∈
ℤ) |
| 55 | | zltnle 9389 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑀 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑀)) |
| 56 | 51, 54, 55 | syl2anc 411 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝑀 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑀)) |
| 57 | 53, 56 | mpbid 147 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → ¬ 𝑚 ≤ 𝑀) |
| 58 | 57 | iffalsed 3572 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) = 0) |
| 59 | | 0cn 8035 |
. . . . . . . 8
⊢ 0 ∈
ℂ |
| 60 | 58, 59 | eqeltrdi 2287 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 61 | 24, 28, 49, 60 | fvmptd3 5658 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐺‘𝑚) = if(𝑚 ≤ 𝑀, ⦋(𝑓‘𝑚) / 𝑘⦌𝐵, 0)) |
| 62 | 61, 60 | eqeltrd 2273 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐺‘𝑚) ∈ ℂ) |
| 63 | | nnsplit 10229 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → ℕ =
((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
| 64 | 8, 63 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → ℕ = ((1...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
| 65 | 64 | eleq2d 2266 |
. . . . . . 7
⊢ (𝜑 → (𝑚 ∈ ℕ ↔ 𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1))))) |
| 66 | 65 | biimpa 296 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
| 67 | | elun 3305 |
. . . . . 6
⊢ (𝑚 ∈ ((1...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 68 | 66, 67 | sylib 122 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑀) ∨ 𝑚 ∈ (ℤ≥‘(𝑀 + 1)))) |
| 69 | 48, 62, 68 | mpjaodan 799 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) ∈ ℂ) |
| 70 | 23, 69 | sylan2br 288 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐺‘𝑚) ∈
ℂ) |
| 71 | 17 | oveq2d 5941 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) = (1...𝑀)) |
| 72 | 71 | eleq2d 2266 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀))) |
| 73 | 72 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑚 ∈ (1...𝑁) ↔ 𝑚 ∈ (1...𝑀))) |
| 74 | 73 | pm5.32i 454 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) ↔ ((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀))) |
| 75 | | isummolem3.4 |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0)) |
| 76 | | breq1 4037 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑛 ≤ 𝑁 ↔ 𝑚 ≤ 𝑁)) |
| 77 | | fveq2 5561 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝐾‘𝑛) = (𝐾‘𝑚)) |
| 78 | 77 | csbeq1d 3091 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → ⦋(𝐾‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
| 79 | 76, 78 | ifbieq1d 3584 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) |
| 80 | | simplr 528 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ∈ ℕ) |
| 81 | | elfzle2 10120 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ (1...𝑁) → 𝑚 ≤ 𝑁) |
| 82 | 81 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → 𝑚 ≤ 𝑁) |
| 83 | 82 | iftrued 3569 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
| 84 | | f1of 5507 |
. . . . . . . . . . . . 13
⊢ (𝐾:(1...𝑁)–1-1-onto→𝐴 → 𝐾:(1...𝑁)⟶𝐴) |
| 85 | 14, 84 | syl 14 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾:(1...𝑁)⟶𝐴) |
| 86 | 85 | ffvelcdmda 5700 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → (𝐾‘𝑚) ∈ 𝐴) |
| 87 | 37 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 88 | | nfcsb1v 3117 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 |
| 89 | 88 | nfel1 2350 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ |
| 90 | | csbeq1a 3093 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝐾‘𝑚) → 𝐵 = ⦋(𝐾‘𝑚) / 𝑘⦌𝐵) |
| 91 | 90 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝐾‘𝑚) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 92 | 89, 91 | rspc 2862 |
. . . . . . . . . . 11
⊢ ((𝐾‘𝑚) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ)) |
| 93 | 86, 87, 92 | sylc 62 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1...𝑁)) → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 94 | 93 | adantlr 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ⦋(𝐾‘𝑚) / 𝑘⦌𝐵 ∈ ℂ) |
| 95 | 83, 94 | eqeltrd 2273 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 96 | 75, 79, 80, 95 | fvmptd3 5658 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻‘𝑚) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) |
| 97 | 96, 95 | eqeltrd 2273 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝐻‘𝑚) ∈ ℂ) |
| 98 | 74, 97 | sylbir 135 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑀)) → (𝐻‘𝑚) ∈ ℂ) |
| 99 | 17 | breq2d 4046 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑚 ≤ 𝑁 ↔ 𝑚 ≤ 𝑀)) |
| 100 | 99 | notbid 668 |
. . . . . . . . . . 11
⊢ (𝜑 → (¬ 𝑚 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑀)) |
| 101 | 100 | ad2antrr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (¬ 𝑚 ≤ 𝑁 ↔ ¬ 𝑚 ≤ 𝑀)) |
| 102 | 57, 101 | mpbird 167 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → ¬ 𝑚 ≤ 𝑁) |
| 103 | 102 | iffalsed 3572 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) = 0) |
| 104 | 103, 59 | eqeltrdi 2287 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 105 | 75, 79, 49, 104 | fvmptd3 5658 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐻‘𝑚) = if(𝑚 ≤ 𝑁, ⦋(𝐾‘𝑚) / 𝑘⦌𝐵, 0)) |
| 106 | 105, 104 | eqeltrd 2273 |
. . . . 5
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑚 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐻‘𝑚) ∈ ℂ) |
| 107 | 98, 106, 68 | mpjaodan 799 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐻‘𝑚) ∈ ℂ) |
| 108 | 23, 107 | sylan2br 288 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ (ℤ≥‘1))
→ (𝐻‘𝑚) ∈
ℂ) |
| 109 | | f1oeq2 5496 |
. . . . . . . . . . 11
⊢
((1...𝑀) =
(1...𝑁) → (𝐾:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐾:(1...𝑁)–1-1-onto→𝐴)) |
| 110 | 19, 109 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐾:(1...𝑀)–1-1-onto→𝐴 ↔ 𝐾:(1...𝑁)–1-1-onto→𝐴)) |
| 111 | 14, 110 | mpbird 167 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾:(1...𝑀)–1-1-onto→𝐴) |
| 112 | | f1of 5507 |
. . . . . . . . 9
⊢ (𝐾:(1...𝑀)–1-1-onto→𝐴 → 𝐾:(1...𝑀)⟶𝐴) |
| 113 | 111, 112 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → 𝐾:(1...𝑀)⟶𝐴) |
| 114 | | fvco3 5635 |
. . . . . . . 8
⊢ ((𝐾:(1...𝑀)⟶𝐴 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) |
| 115 | 113, 114 | sylan 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) = (◡𝑓‘(𝐾‘𝑖))) |
| 116 | 115 | fveq2d 5565 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) = (𝑓‘(◡𝑓‘(𝐾‘𝑖)))) |
| 117 | 11 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑓:(1...𝑀)–1-1-onto→𝐴) |
| 118 | 113 | ffvelcdmda 5700 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) ∈ 𝐴) |
| 119 | | f1ocnvfv2 5828 |
. . . . . . 7
⊢ ((𝑓:(1...𝑀)–1-1-onto→𝐴 ∧ (𝐾‘𝑖) ∈ 𝐴) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) |
| 120 | 117, 118,
119 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑓‘(◡𝑓‘(𝐾‘𝑖))) = (𝐾‘𝑖)) |
| 121 | 116, 120 | eqtr2d 2230 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐾‘𝑖) = (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
| 122 | 121 | csbeq1d 3091 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
| 123 | | elfznn 10146 |
. . . . . 6
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ∈ ℕ) |
| 124 | | elfzle2 10120 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) → 𝑖 ≤ 𝑀) |
| 125 | 124 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ 𝑀) |
| 126 | 18 | breq2d 4046 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑖 ≤ 𝑀 ↔ 𝑖 ≤ 𝑁)) |
| 127 | 126 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑖 ≤ 𝑀 ↔ 𝑖 ≤ 𝑁)) |
| 128 | 125, 127 | mpbid 147 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ≤ 𝑁) |
| 129 | 128 | iftrued 3569 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 130 | 37 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 131 | | nfcsb1v 3117 |
. . . . . . . . . 10
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 |
| 132 | 131 | nfel1 2350 |
. . . . . . . . 9
⊢
Ⅎ𝑘⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ |
| 133 | | csbeq1a 3093 |
. . . . . . . . . 10
⊢ (𝑘 = (𝐾‘𝑖) → 𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 134 | 133 | eleq1d 2265 |
. . . . . . . . 9
⊢ (𝑘 = (𝐾‘𝑖) → (𝐵 ∈ ℂ ↔ ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) |
| 135 | 132, 134 | rspc 2862 |
. . . . . . . 8
⊢ ((𝐾‘𝑖) ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ)) |
| 136 | 118, 130,
135 | sylc 62 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ⦋(𝐾‘𝑖) / 𝑘⦌𝐵 ∈ ℂ) |
| 137 | 129, 136 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 138 | | breq1 4037 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → (𝑛 ≤ 𝑁 ↔ 𝑖 ≤ 𝑁)) |
| 139 | | fveq2 5561 |
. . . . . . . . 9
⊢ (𝑛 = 𝑖 → (𝐾‘𝑛) = (𝐾‘𝑖)) |
| 140 | 139 | csbeq1d 3091 |
. . . . . . . 8
⊢ (𝑛 = 𝑖 → ⦋(𝐾‘𝑛) / 𝑘⦌𝐵 = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 141 | 138, 140 | ifbieq1d 3584 |
. . . . . . 7
⊢ (𝑛 = 𝑖 → if(𝑛 ≤ 𝑁, ⦋(𝐾‘𝑛) / 𝑘⦌𝐵, 0) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) |
| 142 | 141, 75 | fvmptg 5640 |
. . . . . 6
⊢ ((𝑖 ∈ ℕ ∧ if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0) ∈ ℂ) → (𝐻‘𝑖) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) |
| 143 | 123, 137,
142 | syl2an2 594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = if(𝑖 ≤ 𝑁, ⦋(𝐾‘𝑖) / 𝑘⦌𝐵, 0)) |
| 144 | 143, 129 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 145 | | breq1 4037 |
. . . . . . 7
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑛 ≤ 𝑀 ↔ ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀)) |
| 146 | | fveq2 5561 |
. . . . . . . 8
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → (𝑓‘𝑛) = (𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
| 147 | 146 | csbeq1d 3091 |
. . . . . . 7
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
| 148 | 145, 147 | ifbieq1d 3584 |
. . . . . 6
⊢ (𝑛 = ((◡𝑓 ∘ 𝐾)‘𝑖) → if(𝑛 ≤ 𝑀, ⦋(𝑓‘𝑛) / 𝑘⦌𝐵, 0) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0)) |
| 149 | | f1of 5507 |
. . . . . . . . 9
⊢ ((◡𝑓 ∘ 𝐾):(1...𝑀)–1-1-onto→(1...𝑀) → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) |
| 150 | 22, 149 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → (◡𝑓 ∘ 𝐾):(1...𝑀)⟶(1...𝑀)) |
| 151 | 150 | ffvelcdmda 5700 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀)) |
| 152 | | elfznn 10146 |
. . . . . . 7
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) |
| 153 | 151, 152 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ∈ ℕ) |
| 154 | | elfzle2 10120 |
. . . . . . . . . 10
⊢ (((◡𝑓 ∘ 𝐾)‘𝑖) ∈ (1...𝑀) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) |
| 155 | 151, 154 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → ((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀) |
| 156 | 155 | iftrued 3569 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
| 157 | 156, 122 | eqtr4d 2232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) = ⦋(𝐾‘𝑖) / 𝑘⦌𝐵) |
| 158 | 157, 136 | eqeltrd 2273 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0) ∈ ℂ) |
| 159 | 24, 148, 153, 158 | fvmptd3 5658 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = if(((◡𝑓 ∘ 𝐾)‘𝑖) ≤ 𝑀, ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵, 0)) |
| 160 | 159, 156 | eqtrd 2229 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖)) = ⦋(𝑓‘((◡𝑓 ∘ 𝐾)‘𝑖)) / 𝑘⦌𝐵) |
| 161 | 122, 144,
160 | 3eqtr4d 2239 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝐻‘𝑖) = (𝐺‘((◡𝑓 ∘ 𝐾)‘𝑖))) |
| 162 | 2, 4, 6, 10, 22, 70, 108, 161 | seq3f1o 10626 |
. 2
⊢ (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐺)‘𝑀)) |
| 163 | 18 | fveq2d 5565 |
. 2
⊢ (𝜑 → (seq1( + , 𝐻)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) |
| 164 | 162, 163 | eqtr3d 2231 |
1
⊢ (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁)) |